Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning probl...Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.展开更多
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi...Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.展开更多
An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,a...An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.展开更多
Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in thes...Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles.展开更多
Through introducing concepts of great relics and its protective planning theories, construction of relics park is a characteristic protection mode for cultural heritage in China, and also a useful exploration in the c...Through introducing concepts of great relics and its protective planning theories, construction of relics park is a characteristic protection mode for cultural heritage in China, and also a useful exploration in the combination of theories and practices of great relics protection. Moreover, it is also the best means of protecting great relics ever found. Taking landscape planning of the front hall relics of the Weiyang Palace, relics of the front hall was believed to have great scientific value, so its environmental renovation and improvement should be based on scientific landscape planning, the whole relics should be protected and displayed scientifically and completely, landscape elements introduced as the effective texture by applying ecological patterns according to actual conditions, new techniques favorable for the protection and scientific research of relics adopted to provide a new strategy for the construction of great ruins park in China.展开更多
Taking the water regulation of Dingjia pool in Bozhou as an example,the countermeasures of improvement and conservation planning for pool landscape in the process of urbanization were discussed in this study.It was es...Taking the water regulation of Dingjia pool in Bozhou as an example,the countermeasures of improvement and conservation planning for pool landscape in the process of urbanization were discussed in this study.It was essential for the sound development of water of pools in cities to conduct the following rules:① The protection planning of water in cities must be done well,while improvement and conservation planning of pools must be carried out based on the landscapes.② Management according to law or green line of pools must be strengthened or supervised,while illegal buildings and structures are forbidden in the planning range of green line of water,so the filled and infringed pools should be immediately banned.③ It is forbidden to discharge various sewage or dump garbage,residue soil,toxic and harmful substance into water.④ Propaganda of public voice and supervising mechanism should be strengthened,while illegal behaviors should be disclosed,so water protection of pools is rooted in the hearts of people.展开更多
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac...Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.展开更多
Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search,...Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable.展开更多
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ...A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
In order to improve the battle effectiveness of the unmanned aerial vehicle (UAV) under the increasingly complex threat environment, a three-dimension path planning method based on an A * al- gorithm is proposed an...In order to improve the battle effectiveness of the unmanned aerial vehicle (UAV) under the increasingly complex threat environment, a three-dimension path planning method based on an A * al- gorithm is proposed and simulated in this paper which makes the UAV satisfy requirements of different missions. At first, the digital map information is processed vdth an integrated terrain smoothing algorithm, and a safe flight surface which integrates the vehicle dynamic is built and added on the terrain, and then, models of the complicated threats are established and integrated into the digital terrain. At last, an improved A * algorithm is used to plan the three-dimension path on the safe sur- face, and then smooth the path. Simulation results indicate that the approach has a good perform- ance in creating an optimal path in the three-dimension environment and the path planning algorithm is more simple, efficient and easily realized in the engineering field.展开更多
Path planning problem is the core and hot research topic of multiple Automatic Guided Vehicles (multi-AGVs) system. Although there are many research results, they do not solve the path planning problem from the perspe...Path planning problem is the core and hot research topic of multiple Automatic Guided Vehicles (multi-AGVs) system. Although there are many research results, they do not solve the path planning problem from the perspective of reducing traffic congestion. A collision-free path planning method based on improved A* Algorithm for multi-AGVs logistics sorting system is proposed in this paper. In the method, the environment of warehouse operation for AGVs is described by using grid method. The estimated cost of A* algorithm is improved by adding the penalty value of the paths that AGVs share with each other to alleviate traffic congestion and collision resolution rules are made according to different types of collisions. Then the collision-free path planning is done by combing the improved A* algorithm and collision resolution rules. The sorting efficiency of the method is compared with that of original A* algorithm. Simulation results show that the new collision-free path planning method can improve the sorting efficiency of multi-AGVs system and relieve traffic congestion.展开更多
The study examined the nexus between operations improvement function (dimensioned by contingency planning, benchmarking and continuous improvement processes) and organisational adaptability of Petroleum tank farms in ...The study examined the nexus between operations improvement function (dimensioned by contingency planning, benchmarking and continuous improvement processes) and organisational adaptability of Petroleum tank farms in South-South, Nigeria. The contingency theory and the theory of routine dynamics underpinned the study, and positivism was the underlying philosophy. The study adopted the cross-sectional survey through the use of questionnaire. 820 middle and top-level managers constituted the elements of the population, and the Krejcie & Morgan’s formula was used to determine the sample size of 262 respondents. Structural Equation Modeling was deployed to test the hypotheses at a 0.05 significance level. The results showed that contingency planning;benchmarking and continuous improvement processes all have a significant positive relationship with organisational adaptability of Petroleum tank farms in South-South, Nigeria. The study concludes that Petroleum tank farms’ operations should focus on the adoption of contingency planning, benchmarking and continuous improvement processes to enhance organisational adaptability. Therefore, it is recommended that the management of Petroleum tank farms should put in place mechanisms to advance continuous improvement processes by allocating the necessary amount of resources, such as energy, time and money, in order to promote the continuous development of the continuous improvement systems. Furthermore, managers of Petroleum tank farms should make better the adoption of contingency planning, ensuring that there is as much necessary training and information for employees on how to act during a crises situation, in order to evaluate safety and prepare in advance for recovery from disasters.展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development o...Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.展开更多
The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric v...The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.展开更多
Since the advent of liver resection as a treatment option for benign and malignant liver diseases, liver resections have continued to become safer with most centers reporting low morbidity and mortality. Gradual impro...Since the advent of liver resection as a treatment option for benign and malignant liver diseases, liver resections have continued to become safer with most centers reporting low morbidity and mortality. Gradual improvements in outcomes over the last decade have largely been due to improvement in surgical techniques including the more routine use of laparoscopy and advances in perioperative care.展开更多
This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ...This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.展开更多
Sustainable development can only be achieved by conscious planning and implementation of action plans. Decision making requires a careful selection of the right conceptual framework and models for planning and impleme...Sustainable development can only be achieved by conscious planning and implementation of action plans. Decision making requires a careful selection of the right conceptual framework and models for planning and implementation processes. Planning process models dictate in very clear terms what must be done and how it is done to achieve a successful completion of a process of activity [1]. Since about 80% of data used to support decisions are geographically related [3], it is necessary to put Geographic Information Systems (GIS) at the core of the planning and implementation model. There exists a great disparity in a heterogeneous world. The locational disparity in achieving sustainable development, therefore, necessitates a planning model that is “location specific” i.e. identifies areas (locations) requiring intervention and areas (locations) requiring continuous improvement strategies. This was achieved in this study by reviewing Bell’s Information System Strategic Planning Model and Kaufman’s Strategic Planning Model, and the designing of new model to overcome the limitation of existing models. Practical application of the new model was carried out in education planning and administration in order to achieve the global goals for sustainable development 4 (quality education). Finding shows that the Comparative Geospatial Planning Model for “Location Specific” Intervention and Continuous Improvement Strategy is useful to support the achievement of sustainable development goals in multidisciplinary, multi-sector applicable instances.展开更多
基金supported by the Opening Fund of Shandong Provincial Key Laboratory of Network based Intelligent Computing,the National Natural Science Foundation of China(52205529,61803192)the Natural Science Foundation of Shandong Province(ZR2021QE195)+1 种基金the Youth Innovation Team Program of Shandong Higher Education Institution(2023KJ206)the Guangyue Youth Scholar Innovation Talent Program support received from Liaocheng University(LCUGYTD2022-03).
文摘Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.
基金supported by National Natural Science Foundation of China(71904006)Henan Province Key R&D Special Project(231111322200)+1 种基金the Science and Technology Research Plan of Henan Province(232102320043,232102320232,232102320046)the Natural Science Foundation of Henan(232300420317,232300420314).
文摘Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential.
基金supported by Foundation of key Laboratory of AI and Information Processing of Education Department of Guangxi(No.2022GXZDSY002)(Hechi University),Foundation of Guangxi Key Laboratory of Automobile Components and Vehicle Technology(Nos.2022GKLACVTKF04,2023GKLACVTZZ06)。
文摘An improved RRT∗algorithm,referred to as the AGP-RRT∗algorithm,is proposed to address the problems of poor directionality,long generated paths,and slow convergence speed in multi-axis robotic arm path planning.First,an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency.Second,a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to accelerate the search speed of the algorithm.Finally,the planning path is processed by pruning,removing redundant points and path smoothing fitting using cubic B-spline curves to improve the flexibility of the robotic arm.Through the six-axis robotic arm path planning simulation experiments on the MATLAB platform,the results show that the AGP-RRT∗algorithm reduces 87.34%in terms of the average running time and 40.39%in terms of the average path cost;Meanwhile,under two sets of complex environments A and B,the average running time of the AGP-RRT∗algorithm is shortened by 94.56%vs.95.37%,and the average path cost is reduced by 55.28%vs.47.82%,which proves the effectiveness of the AGP-RRT∗algorithm in improving the efficiency of multi-axis robotic arm path planning.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK20211037)the Science and Technology Development Fund of Wuxi (N20201011)the Nanjing University of Information Science and Technology Wuxi Campus District graduate innovation Project。
文摘Background Automatic guided vehicles(AGVs)have developed rapidly in recent years and have been used in several fields,including intelligent transportation,cargo assembly,military testing,and others.A key issue in these applications is path planning.Global path planning results based on known environmental information are used as the ideal path for AGVs combined with local path planning to achieve safe and rapid arrival at the destination.Using the global planning method,the ideal path should meet the requirements of as few turns as possible,a short planning time,and continuous path curvature.Methods We propose a global path-planning method based on an improved A^(*)algorithm.The robustness of the algorithm was verified by simulation experiments in typical multiobstacle and indoor scenarios.To improve the efficiency of the path-finding time,we increase the heuristic information weight of the target location and avoid invalid cost calculations of the obstacle areas in the dynamic programming process.Subsequently,the optimality of the number of turns in the path is ensured based on the turning node backtracking optimization method.Because the final global path needs to satisfy the AGV kinematic constraints and curvature continuity condition,we adopt a curve smoothing scheme and select the optimal result that meets the constraints.Conclusions Simulation results show that the improved algorithm proposed in this study outperforms the traditional method and can help AGVs improve the efficiency of task execution by planning a path with low complexity and smoothness.Additionally,this scheme provides a new solution for global path planning of unmanned vehicles.
文摘Through introducing concepts of great relics and its protective planning theories, construction of relics park is a characteristic protection mode for cultural heritage in China, and also a useful exploration in the combination of theories and practices of great relics protection. Moreover, it is also the best means of protecting great relics ever found. Taking landscape planning of the front hall relics of the Weiyang Palace, relics of the front hall was believed to have great scientific value, so its environmental renovation and improvement should be based on scientific landscape planning, the whole relics should be protected and displayed scientifically and completely, landscape elements introduced as the effective texture by applying ecological patterns according to actual conditions, new techniques favorable for the protection and scientific research of relics adopted to provide a new strategy for the construction of great ruins park in China.
文摘Taking the water regulation of Dingjia pool in Bozhou as an example,the countermeasures of improvement and conservation planning for pool landscape in the process of urbanization were discussed in this study.It was essential for the sound development of water of pools in cities to conduct the following rules:① The protection planning of water in cities must be done well,while improvement and conservation planning of pools must be carried out based on the landscapes.② Management according to law or green line of pools must be strengthened or supervised,while illegal buildings and structures are forbidden in the planning range of green line of water,so the filled and infringed pools should be immediately banned.③ It is forbidden to discharge various sewage or dump garbage,residue soil,toxic and harmful substance into water.④ Propaganda of public voice and supervising mechanism should be strengthened,while illegal behaviors should be disclosed,so water protection of pools is rooted in the hearts of people.
基金This research has been funded by Scientific Research Deanship at University of Ha’il–Saudi Arabia through Project Number BA-2107.
文摘Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm.
文摘Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable.
文摘A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
文摘In order to improve the battle effectiveness of the unmanned aerial vehicle (UAV) under the increasingly complex threat environment, a three-dimension path planning method based on an A * al- gorithm is proposed and simulated in this paper which makes the UAV satisfy requirements of different missions. At first, the digital map information is processed vdth an integrated terrain smoothing algorithm, and a safe flight surface which integrates the vehicle dynamic is built and added on the terrain, and then, models of the complicated threats are established and integrated into the digital terrain. At last, an improved A * algorithm is used to plan the three-dimension path on the safe sur- face, and then smooth the path. Simulation results indicate that the approach has a good perform- ance in creating an optimal path in the three-dimension environment and the path planning algorithm is more simple, efficient and easily realized in the engineering field.
文摘Path planning problem is the core and hot research topic of multiple Automatic Guided Vehicles (multi-AGVs) system. Although there are many research results, they do not solve the path planning problem from the perspective of reducing traffic congestion. A collision-free path planning method based on improved A* Algorithm for multi-AGVs logistics sorting system is proposed in this paper. In the method, the environment of warehouse operation for AGVs is described by using grid method. The estimated cost of A* algorithm is improved by adding the penalty value of the paths that AGVs share with each other to alleviate traffic congestion and collision resolution rules are made according to different types of collisions. Then the collision-free path planning is done by combing the improved A* algorithm and collision resolution rules. The sorting efficiency of the method is compared with that of original A* algorithm. Simulation results show that the new collision-free path planning method can improve the sorting efficiency of multi-AGVs system and relieve traffic congestion.
文摘The study examined the nexus between operations improvement function (dimensioned by contingency planning, benchmarking and continuous improvement processes) and organisational adaptability of Petroleum tank farms in South-South, Nigeria. The contingency theory and the theory of routine dynamics underpinned the study, and positivism was the underlying philosophy. The study adopted the cross-sectional survey through the use of questionnaire. 820 middle and top-level managers constituted the elements of the population, and the Krejcie & Morgan’s formula was used to determine the sample size of 262 respondents. Structural Equation Modeling was deployed to test the hypotheses at a 0.05 significance level. The results showed that contingency planning;benchmarking and continuous improvement processes all have a significant positive relationship with organisational adaptability of Petroleum tank farms in South-South, Nigeria. The study concludes that Petroleum tank farms’ operations should focus on the adoption of contingency planning, benchmarking and continuous improvement processes to enhance organisational adaptability. Therefore, it is recommended that the management of Petroleum tank farms should put in place mechanisms to advance continuous improvement processes by allocating the necessary amount of resources, such as energy, time and money, in order to promote the continuous development of the continuous improvement systems. Furthermore, managers of Petroleum tank farms should make better the adoption of contingency planning, ensuring that there is as much necessary training and information for employees on how to act during a crises situation, in order to evaluate safety and prepare in advance for recovery from disasters.
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(No.294931)the National Science Foundation of China (No.51175262)+1 种基金Jiangsu Province Science Foundation for Excellent Youths(No.BK2012032)Jiangsu Province Industry-Academy-Research Grant(No.BY201220116)
文摘Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.
基金the National Social Science Foundation of China(No.18AJL014)。
文摘The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable.
文摘Since the advent of liver resection as a treatment option for benign and malignant liver diseases, liver resections have continued to become safer with most centers reporting low morbidity and mortality. Gradual improvements in outcomes over the last decade have largely been due to improvement in surgical techniques including the more routine use of laparoscopy and advances in perioperative care.
基金Fund of Taishan Scholar in Shandong Province,Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.
文摘Sustainable development can only be achieved by conscious planning and implementation of action plans. Decision making requires a careful selection of the right conceptual framework and models for planning and implementation processes. Planning process models dictate in very clear terms what must be done and how it is done to achieve a successful completion of a process of activity [1]. Since about 80% of data used to support decisions are geographically related [3], it is necessary to put Geographic Information Systems (GIS) at the core of the planning and implementation model. There exists a great disparity in a heterogeneous world. The locational disparity in achieving sustainable development, therefore, necessitates a planning model that is “location specific” i.e. identifies areas (locations) requiring intervention and areas (locations) requiring continuous improvement strategies. This was achieved in this study by reviewing Bell’s Information System Strategic Planning Model and Kaufman’s Strategic Planning Model, and the designing of new model to overcome the limitation of existing models. Practical application of the new model was carried out in education planning and administration in order to achieve the global goals for sustainable development 4 (quality education). Finding shows that the Comparative Geospatial Planning Model for “Location Specific” Intervention and Continuous Improvement Strategy is useful to support the achievement of sustainable development goals in multidisciplinary, multi-sector applicable instances.