The pressure gradient of the lithosphere is a key to explaining various geological processes, and varies also in time and space similar to the geothermal gradient. In this paper a correlation formula of geothermal gra...The pressure gradient of the lithosphere is a key to explaining various geological processes, and varies also in time and space similar to the geothermal gradient. In this paper a correlation formula of geothermal gradients and pressure gradients was built with the thermocomprestion coefficients. Based on this formula, the article has studied the relation between the pressure gradients and the geothermal gradients in the lithosphere, and the results indicate that the pressure gradient in the lithosphere is nonlinear, and its minimum value is the lithostatic gradient, and that the pressure gradient of the lithosphere will increase obviously with the contribution of both geothermal and gravity, and could be twice times more than the lithostatic gradient.展开更多
Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of ...Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of the upper crust is 150–300°C lower than that of the lower crust, and the viscous coefficient of the upper crust is 2–3 orders of magnitude larger than that of the lower crust. It reveals that the upper crust is characterized by brittle deformation while the lower crust by ductile deformation. A channel of lower-viscosity should be formed between the upper and lower crust when the lithosphere is scattered and spreads out toward ocean from northwest to southeast along the northern margin of South China Sea. And, a brittle deformation takes place in the upper part of the lithosphere while a ductile deformation takes place in the lower part of the lithosphere due to different viscous coefficients and temperature. The layered deformation leads the faulted blocks to rotate along the faulting and the marginal grabens to appear in the northern margin of South China Sea in Cenozoic tectonic expansion.展开更多
Numerical experiments are used in this study to systematically investigate the effects of convergence rate,crustal rheological strength,and lithospheric thermal structure on the dynamics of continental collision.The s...Numerical experiments are used in this study to systematically investigate the effects of convergence rate,crustal rheological strength,and lithospheric thermal structure on the dynamics of continental collision.The study focuses on the types,conditions and processes of unstable continental subduction.Modelling results suggest that the development of unstable continental subduction can be promoted by conditions that tend to decrease rheological strength of the lithosphere,such as low crustal rheological strength,"hot"thermal structure of the lithosphere,or low convergence rate.Unstable subduction mode can be further categorized into three types:(1)multi-stage slab breakoff,(2)continuously"flowing"of fluid-like slab into the upper mantle,and(3)large-scale detachment of the thickened orogenic root.These three types of unstable continental subduction are respectively associated with(1)a low convergence rate,(2)"hot"thermal structure of the lithosphere with a high convergence rate,and(3)moderate-high crustal rheological strength with a low convergence rate.It is also revealed that the evolution of crustal melting is dominated by the deformation pattern of continental collision,which is mainly controlled by crustal rheological strength.The modelling results have important implications for understanding of continental subduction mode selection under specific geodynamic conditions.展开更多
We used twodimensional numerical simulations to investigate smallscale convection in the upper mantlelithosphere system with depth and temperaturedependent viscosity. Our aim was to examine the mechanism of craton thi...We used twodimensional numerical simulations to investigate smallscale convection in the upper mantlelithosphere system with depth and temperaturedependent viscosity. Our aim was to examine the mechanism of craton thinning by thermal con vection. The model domain is 700 km deep and 700 km wide with a resolution of 71x71 nodes and 160000 markers. The ve locity boundary conditions are freeslip along all the boundaries. A thermal insulation condition was applied at the two side walls, with constant temperatures for the top and bottom boundaries. We assumed an initial temperature of 273 K at the upper boundary and 1673 K at the lower boundary, and 1573 K at the bottom of the lithosphere (200 km depth) for the thick, cold, and stable North China Craton (NCC). We calculated the thermal evolution in the upper mantle when the temperature at its bottom is raised because of lower mantle convection or plumes. The temperature at the bottom of the upper mantle was set at 1773, 1873, 1973, and 2073 K for different models to study the temperature effect on the lithospheric thinning processes. Our endmember calculations show that with the bottom boundary raising the lithosphere can be thinned from a depth of 200 km to a depth of between 100 and 126.25 km. The thinning rates are at mm/y order of magnitude, and the thinning timescale is about 10 Ma.展开更多
The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric...The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.展开更多
基金the Scientific Project of Ministry of Land and Resource of Chinathe National Natural Science Foundation of Chinathe Doctoral Station Foundation of Ministry of Education of China
文摘The pressure gradient of the lithosphere is a key to explaining various geological processes, and varies also in time and space similar to the geothermal gradient. In this paper a correlation formula of geothermal gradients and pressure gradients was built with the thermocomprestion coefficients. Based on this formula, the article has studied the relation between the pressure gradients and the geothermal gradients in the lithosphere, and the results indicate that the pressure gradient in the lithosphere is nonlinear, and its minimum value is the lithostatic gradient, and that the pressure gradient of the lithosphere will increase obviously with the contribution of both geothermal and gravity, and could be twice times more than the lithostatic gradient.
基金the National Natural Science Foundation of China (Grant Nos.49732005, 49733011) and the Chinese Academy of Sciences (Grant No. KZ951-A1-401). We wish to thank Prof. Xu Houze and Lu Yang for their contribution in gravitational model. The authors also than
文摘Based on the geothermal and gravitation methods, this paper investigated the rheological and thermal structure of the lithosphere under the northern margin of South China Sea. The result shows that the temperature of the upper crust is 150–300°C lower than that of the lower crust, and the viscous coefficient of the upper crust is 2–3 orders of magnitude larger than that of the lower crust. It reveals that the upper crust is characterized by brittle deformation while the lower crust by ductile deformation. A channel of lower-viscosity should be formed between the upper and lower crust when the lithosphere is scattered and spreads out toward ocean from northwest to southeast along the northern margin of South China Sea. And, a brittle deformation takes place in the upper part of the lithosphere while a ductile deformation takes place in the lower part of the lithosphere due to different viscous coefficients and temperature. The layered deformation leads the faulted blocks to rotate along the faulting and the marginal grabens to appear in the northern margin of South China Sea in Cenozoic tectonic expansion.
基金supported by National Basic Research Program of China(Grant Nos.2014CB440901,2015CB856106 and 2016 YFC0600303)National Natural Science Foundation of China(Grant Nos. 41190073 and 41372198)the National "Qian-Ren " Program to Z.H.Li, the Fundamental Research Funds for the Central Universities to Sun Yat-senUniversity,and the PetroChina Project(Grant No.2016B-0501)
文摘Numerical experiments are used in this study to systematically investigate the effects of convergence rate,crustal rheological strength,and lithospheric thermal structure on the dynamics of continental collision.The study focuses on the types,conditions and processes of unstable continental subduction.Modelling results suggest that the development of unstable continental subduction can be promoted by conditions that tend to decrease rheological strength of the lithosphere,such as low crustal rheological strength,"hot"thermal structure of the lithosphere,or low convergence rate.Unstable subduction mode can be further categorized into three types:(1)multi-stage slab breakoff,(2)continuously"flowing"of fluid-like slab into the upper mantle,and(3)large-scale detachment of the thickened orogenic root.These three types of unstable continental subduction are respectively associated with(1)a low convergence rate,(2)"hot"thermal structure of the lithosphere with a high convergence rate,and(3)moderate-high crustal rheological strength with a low convergence rate.It is also revealed that the evolution of crustal melting is dominated by the deformation pattern of continental collision,which is mainly controlled by crustal rheological strength.The modelling results have important implications for understanding of continental subduction mode selection under specific geodynamic conditions.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 90814014 & 40971226)Sino-Probe 09-03 (YOQ0360032)Sino-Probe 07
文摘We used twodimensional numerical simulations to investigate smallscale convection in the upper mantlelithosphere system with depth and temperaturedependent viscosity. Our aim was to examine the mechanism of craton thinning by thermal con vection. The model domain is 700 km deep and 700 km wide with a resolution of 71x71 nodes and 160000 markers. The ve locity boundary conditions are freeslip along all the boundaries. A thermal insulation condition was applied at the two side walls, with constant temperatures for the top and bottom boundaries. We assumed an initial temperature of 273 K at the upper boundary and 1673 K at the lower boundary, and 1573 K at the bottom of the lithosphere (200 km depth) for the thick, cold, and stable North China Craton (NCC). We calculated the thermal evolution in the upper mantle when the temperature at its bottom is raised because of lower mantle convection or plumes. The temperature at the bottom of the upper mantle was set at 1773, 1873, 1973, and 2073 K for different models to study the temperature effect on the lithospheric thinning processes. Our endmember calculations show that with the bottom boundary raising the lithosphere can be thinned from a depth of 200 km to a depth of between 100 and 126.25 km. The thinning rates are at mm/y order of magnitude, and the thinning timescale is about 10 Ma.
基金supported by Sinopec Marine Forward-looking Projects (Grant No. YPH08101)
文摘The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.