In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA’s Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LA...In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA’s Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LAB) having a propagation delay of 165 ps in the chain is synthesized as delay cell. Coarse counters triggered by the global clock count the more significant bits of the time data. This clock is also fed through the delay line, and LABs create the copies. The replicas are latched by the tested event signal, and the less significant bits are encoded from the latched binary bits. Single-shot resolution of the TDC can be 60 ps. The worst Differential Nonlinearity (DNL) is about 0.2 Least Significant Bit (LSB, 165 ps in this TDC module), and the Integral Nonlinearity (INL) is 0.6 LSB. In comparison with other architectures using the synchronous global clock to sample the taps, this architecture consumed less electric power and logic cells, and is more stable.展开更多
AIM: To determine if hyperpolarisation-activated nucleotide-gated(HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung's disease.METHODS:We investigated HCN1,HCN2,H...AIM: To determine if hyperpolarisation-activated nucleotide-gated(HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung's disease.METHODS:We investigated HCN1,HCN2,HCN3 and HCN4 protein expression in pull-through specimens from patients with Hirschsprung’s disease(HSCR,n=10)using the proximal-most ganglionic segment and distalmost aganglionic segment,as well as in healthy control specimens obtained at the time of sigmoid colostomy closure in children who had undergone anorectoplasty for imperforate anus(n=10).Fluorescent immunohistochemistry was performed to assess protein distribution,which was then visualized using confocal microscopy.RESULTS:No HCN1 channel expression was observed in any of the tissues studied.Both HCN2 and HCN4proteins were found to be equally expressed in the aganglionic and ganglionic bowel in HSCR and controls.HCN3 channel expression was found to be markedly decreased in the aganglionic colon vs ganglionic colon and controls.HCN2-4 channels were seen to be expressed within neurons of the myenteric and submucosal plexus of the ganglionic bowel and normal controls,and also co-localised to interstitial cells of Cajal in all tissues studied.CONCLUSION:We demonstrate HCN channel expression in human colon for the first time.Reduced HCN3expression in aganglionic bowel suggests its potential role in HSCR pathophysiology.展开更多
Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A ...Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.展开更多
Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumor...Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors. This study investigated the functional expression of Nav1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231. The mRNA and protein expression of Nav1.5 was detected by real time PCR, Western Blot and immunofluorescence. The effects of Nav1.5 on cell proliferation, migration and invasion were respectively assessed by MTT and Transwell. The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR. The over-expressed Nav 1.5 was present on the membrane of MDA-MB-231 cells. The invasion ability in vitro and the MMP-9 mRNA expression were respectively decreased to (47.82±0.53)% and (43.97±0.64)% (P〈0.05) respectively in MDA-MB-23 t cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity. It was concluded that Navl.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9.展开更多
A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is deriv...A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electro- static potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously im- prove carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD.展开更多
A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelte...A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.展开更多
A novel ultralow turnoff loss dual-gate silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well an...A novel ultralow turnoff loss dual-gate silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well and n-drift, and an n-type carrier stored (CS) layer beneath the p-well. In the on-state, the extra trench gate acts as a barrier, which increases the cartier density at the cathode side of n-drift region, resulting in a decrease of the on-state voltage drop (Von). In the off-state, due to the uniform carder distribution and the assisted depletion effect induced by the extra trench gate, large number of carriers can be removed at the initial turnoff process, contributing to a low turnoff loss (Eoff). Moreover, owing to the dual-gate field plates and CS layer, the carrier density beneath the p-well can greatly increase, which further improves the tradeoff between Eoff and Von. Simulation results show that Eoff of the proposed SOI LIGBT can decrease by 77% compared with the conventional trench gate SOI LIGBT at the same Von of 1.1 V.展开更多
A continuous yet analytic channel potential solution is proposed for doped symmetric double-gate (DG) MOSFETs from the accumulation to the strong-inversion region. Analytical channel potential relationship is derive...A continuous yet analytic channel potential solution is proposed for doped symmetric double-gate (DG) MOSFETs from the accumulation to the strong-inversion region. Analytical channel potential relationship is derived from the complete 1-D Poisson equation physically, and the channel potential solution of the DG MOSFET is obtained analytically. The extensive comparisons between the presented solution and the numerical simulation illustrate that the solution is not only accurate and continuous in the whole operation regime of DG MOSFETs, but also valid to wide doping concentration and various geometrical sizes, without employing any fitting parameter.展开更多
InA1As/InGaAs high electron mobility transistors (HEMTs) on an InP substrate with well-balanced cutoff frequency fT and maximum oscillation frequency frnax are reported. An InA1As/InGaAs HEMT with 100-nm gate length...InA1As/InGaAs high electron mobility transistors (HEMTs) on an InP substrate with well-balanced cutoff frequency fT and maximum oscillation frequency frnax are reported. An InA1As/InGaAs HEMT with 100-nm gate length and gate width of 2 × 50 μm shows excellent DC characteristics, including full channel current of 724 mA/mm, extrinsic maximum transconductance gm.max of 1051 mS/mm, and drain-gate breakdown voltage BVDG of 5.92 V. In addition, this device exhibits fT = 249 GHz and fmax = 415 GHz. These results were obtained by fabricating an asymmetrically recessed gate and minimizing the parasitic resistances. The specific Ohmic contact resistance was reduced to 0.031 0.mm. Moreover, the fT obtained in this work is the highest ever reported in 100-nm gate length InA1As/InGaAs InP-based HEMTs. The outstanding gm.max, fT, fmax, and good BVDG make the device suitable for applications in low noise amplifiers, power amplifiers, and high speed circuits.展开更多
A new high voltage trench lateral double-diffused metal–oxide semiconductor (LDMOS) with ultra-low specific onresistance (R on,sp ) is proposed. The structure features a dual gate (DG LDMOS): a planar gate and...A new high voltage trench lateral double-diffused metal–oxide semiconductor (LDMOS) with ultra-low specific onresistance (R on,sp ) is proposed. The structure features a dual gate (DG LDMOS): a planar gate and a trench gate inset in the oxide trench. Firstly, the dual gate can provide a dual conduction channel and reduce R on,sp dramatically. Secondly, the oxide trench in the drift region modulates the electric field distribution and reduces the cell pitch but still can maintain comparable breakdown voltage (BV). Simulation results show that the cell pitch of the DG LDMOS can be reduced by 50% in comparison with that of conventional LDMOS at the equivalent BV; furthermore, R on,sp of the DG LDMOS can be reduced by 67% due to the smaller cell pitch and the dual gate.展开更多
N and P-channel groove-gate MOSFETs based on a self-aligned CMOS process have been fabricated and characterized. For the devices with channel length of 140nm, the measured drain induced barrier lowering (DIBL) was 6...N and P-channel groove-gate MOSFETs based on a self-aligned CMOS process have been fabricated and characterized. For the devices with channel length of 140nm, the measured drain induced barrier lowering (DIBL) was 66mV/V for n-MOSFETs and 82mV/V for p-MOSFETs. The substrate current of a groove-gate n-MOSFET was 150 times less than that of a conventional planar n-MOSFET, These results demonstrate that groove-gate MOSFETs have excellent capabilities in suppressing short-channel effects. It is worth emphasizing that our groove-gate MOSFET devices are fabricated by using a simple process flow, with the potential of fabricating devices in the sub-100nm range.展开更多
基金Supported by National Natural Science Foundation of China (No. 10405023)Knowledge Innovation Program of The Chinese Academy of Sciences (KJCX2-YW-N27)
文摘In this paper, the design of a coarse-fine interpolation Time-to-Digital Converter (TDC) is implemented in an ALTERA’s Cyclone FPGA. The carry-select chain performs as the tapped delay line. The Logic Array Block (LAB) having a propagation delay of 165 ps in the chain is synthesized as delay cell. Coarse counters triggered by the global clock count the more significant bits of the time data. This clock is also fed through the delay line, and LABs create the copies. The replicas are latched by the tested event signal, and the less significant bits are encoded from the latched binary bits. Single-shot resolution of the TDC can be 60 ps. The worst Differential Nonlinearity (DNL) is about 0.2 Least Significant Bit (LSB, 165 ps in this TDC module), and the Integral Nonlinearity (INL) is 0.6 LSB. In comparison with other architectures using the synchronous global clock to sample the taps, this architecture consumed less electric power and logic cells, and is more stable.
基金Supported by National Children’s Research Centre/Children’s Medical Research Foundation,Ireland
文摘AIM: To determine if hyperpolarisation-activated nucleotide-gated(HCN) channels exist in human colon, and to investigate the expression of HCN channels in Hirschsprung's disease.METHODS:We investigated HCN1,HCN2,HCN3 and HCN4 protein expression in pull-through specimens from patients with Hirschsprung’s disease(HSCR,n=10)using the proximal-most ganglionic segment and distalmost aganglionic segment,as well as in healthy control specimens obtained at the time of sigmoid colostomy closure in children who had undergone anorectoplasty for imperforate anus(n=10).Fluorescent immunohistochemistry was performed to assess protein distribution,which was then visualized using confocal microscopy.RESULTS:No HCN1 channel expression was observed in any of the tissues studied.Both HCN2 and HCN4proteins were found to be equally expressed in the aganglionic and ganglionic bowel in HSCR and controls.HCN3 channel expression was found to be markedly decreased in the aganglionic colon vs ganglionic colon and controls.HCN2-4 channels were seen to be expressed within neurons of the myenteric and submucosal plexus of the ganglionic bowel and normal controls,and also co-localised to interstitial cells of Cajal in all tissues studied.CONCLUSION:We demonstrate HCN channel expression in human colon for the first time.Reduced HCN3expression in aganglionic bowel suggests its potential role in HSCR pathophysiology.
基金the National Natural Science Foundation of China(No.30470559,30330230,30240059)the National Basic Research Development Program(973)of China(No.2007CB512501)Beijing Natural Science Foundation(No.7052039)
文摘Dorsal root ganglion(DRG)neurons have peripheral terminals in skin,muscle,and other peripheral tissues,andcentral
基金the National Natural Science Foundation of China, No.30903123, 30901329the Project of Science and Technology of Jilin Province, No.20090741, 20090185
文摘Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.
文摘Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors. This study investigated the functional expression of Nav1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231. The mRNA and protein expression of Nav1.5 was detected by real time PCR, Western Blot and immunofluorescence. The effects of Nav1.5 on cell proliferation, migration and invasion were respectively assessed by MTT and Transwell. The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR. The over-expressed Nav 1.5 was present on the membrane of MDA-MB-231 cells. The invasion ability in vitro and the MMP-9 mRNA expression were respectively decreased to (47.82±0.53)% and (43.97±0.64)% (P〈0.05) respectively in MDA-MB-23 t cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity. It was concluded that Navl.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204092 and 61076101)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K50511250001)
文摘A two-dimensional analytical subthreshold behavior model for junctionless dual-material cylindrical surrounding- gate (JLDMCSG) metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed. It is derived by solving the two-dimensional Poisson's equation in two continuous cylindrical regions with any simplifying assumption. Using this analytical model, the subthreshold characteristics of JLDMCSG MOSFETs are investigated in terms of channel electro- static potential, horizontal electric field, and subthreshold current. Compared to junctionless single-material cylindrical surrounding-gate MOSFETs, JLDMCSG MOSFETs can effectively suppress short-channel effects and simultaneously im- prove carrier transport efficiency. It is found that the subthreshold current of JLDMCSG MOSFETs can be significantly reduced by adopting both a thin oxide and thin silicon channel. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical simulator ISE TCAD.
文摘A design of low-light-level night vision system is described,which can image objects selectively in the specific space. The system can selectively image some objects in specific distances,meanwhile ignore those shelters on the way of observation by combining an intensifying charge coupled device(ICCD) with a near infrared laser assisted in vision,whose operation wavelength matches with the photocathode of the image tube,and adopting the gated mode and adjustable time-delay. A semiconductor laser diode of 100 W in peak power is chosen for illumination. The laser and the image tube operate in 150 ns pulse width and 2 kHz repeat frequency. Some images of different objects at the different distances within 100 m can be obtained clearly,and even behind a grove by using a sampling circuit and a delay control device at 100 W in peak power of semiconductor laser diode,150 ns in pulse width of laser and image tube,2 kHz in repeat frequency.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376080 and 61674027)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2014A030313736 and 2016A030311022)
文摘A novel ultralow turnoff loss dual-gate silicon-on-insulator (SOI) lateral insulated gate bipolar transistor (LIGBT) is proposed. The proposed SOI LIGBT features an extra trench gate inserted between the p-well and n-drift, and an n-type carrier stored (CS) layer beneath the p-well. In the on-state, the extra trench gate acts as a barrier, which increases the cartier density at the cathode side of n-drift region, resulting in a decrease of the on-state voltage drop (Von). In the off-state, due to the uniform carder distribution and the assisted depletion effect induced by the extra trench gate, large number of carriers can be removed at the initial turnoff process, contributing to a low turnoff loss (Eoff). Moreover, owing to the dual-gate field plates and CS layer, the carrier density beneath the p-well can greatly increase, which further improves the tradeoff between Eoff and Von. Simulation results show that Eoff of the proposed SOI LIGBT can decrease by 77% compared with the conventional trench gate SOI LIGBT at the same Von of 1.1 V.
基金Project supported by the National Natural Science Foundation of China(Grant No.60876027)the Open Funds of Jiangsu Province Key Lab of ASIC Design(JSICK1007)
文摘A continuous yet analytic channel potential solution is proposed for doped symmetric double-gate (DG) MOSFETs from the accumulation to the strong-inversion region. Analytical channel potential relationship is derived from the complete 1-D Poisson equation physically, and the channel potential solution of the DG MOSFET is obtained analytically. The extensive comparisons between the presented solution and the numerical simulation illustrate that the solution is not only accurate and continuous in the whole operation regime of DG MOSFETs, but also valid to wide doping concentration and various geometrical sizes, without employing any fitting parameter.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327502)
文摘InA1As/InGaAs high electron mobility transistors (HEMTs) on an InP substrate with well-balanced cutoff frequency fT and maximum oscillation frequency frnax are reported. An InA1As/InGaAs HEMT with 100-nm gate length and gate width of 2 × 50 μm shows excellent DC characteristics, including full channel current of 724 mA/mm, extrinsic maximum transconductance gm.max of 1051 mS/mm, and drain-gate breakdown voltage BVDG of 5.92 V. In addition, this device exhibits fT = 249 GHz and fmax = 415 GHz. These results were obtained by fabricating an asymmetrically recessed gate and minimizing the parasitic resistances. The specific Ohmic contact resistance was reduced to 0.031 0.mm. Moreover, the fT obtained in this work is the highest ever reported in 100-nm gate length InA1As/InGaAs InP-based HEMTs. The outstanding gm.max, fT, fmax, and good BVDG make the device suitable for applications in low noise amplifiers, power amplifiers, and high speed circuits.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61176069)the National Key Laboratory of Analog Integrated Circuit,China (Grant No. 9140C090304110C0905)the Innovation Foundation of the State Key Laboratory of Electronic Thin Films and Integrated Devices,China (Grant No. CXJJ201004)
文摘A new high voltage trench lateral double-diffused metal–oxide semiconductor (LDMOS) with ultra-low specific onresistance (R on,sp ) is proposed. The structure features a dual gate (DG LDMOS): a planar gate and a trench gate inset in the oxide trench. Firstly, the dual gate can provide a dual conduction channel and reduce R on,sp dramatically. Secondly, the oxide trench in the drift region modulates the electric field distribution and reduces the cell pitch but still can maintain comparable breakdown voltage (BV). Simulation results show that the cell pitch of the DG LDMOS can be reduced by 50% in comparison with that of conventional LDMOS at the equivalent BV; furthermore, R on,sp of the DG LDMOS can be reduced by 67% due to the smaller cell pitch and the dual gate.
基金Project supported by the National Natural Science Foundation of China (Grant No 60376024).
文摘N and P-channel groove-gate MOSFETs based on a self-aligned CMOS process have been fabricated and characterized. For the devices with channel length of 140nm, the measured drain induced barrier lowering (DIBL) was 66mV/V for n-MOSFETs and 82mV/V for p-MOSFETs. The substrate current of a groove-gate n-MOSFET was 150 times less than that of a conventional planar n-MOSFET, These results demonstrate that groove-gate MOSFETs have excellent capabilities in suppressing short-channel effects. It is worth emphasizing that our groove-gate MOSFET devices are fabricated by using a simple process flow, with the potential of fabricating devices in the sub-100nm range.