Mixers in the communication system provide the possibility of encoding and decoding radio-frequency EM waves with signals through the help of local oscillators. A mixer with capability of high conversion gain, good is...Mixers in the communication system provide the possibility of encoding and decoding radio-frequency EM waves with signals through the help of local oscillators. A mixer with capability of high conversion gain, good isolation, and good linearity is comparably appreciated. Extensively wide ranges of frequencies, from 5.0 to 18.0 GHz, are to be examined addressing the promising functions of mixers in this study. A TSMC 0.18 μm CMOS model implanted in Agilent ADS is used for the circuit designs. Generated from Gilbert Cell Mixer, the modified circuits take advantage of extra active and passive devices to optimize the conversion gains. Characteristics of high conversion gain over 20 dB or even higher (as high as 29.842 dB at -40 mW RF power at working frequency 6 GHz) and low noise figures (NF) are shown.展开更多
A CMOS variable gain amplifier(VGA) that adopts a novel exponential gain approximation is presented.No additional exponential gain control circuit is required in the proposed VGA used in a direct conversion receiver...A CMOS variable gain amplifier(VGA) that adopts a novel exponential gain approximation is presented.No additional exponential gain control circuit is required in the proposed VGA used in a direct conversion receiver.A wide gain control voltage from 0.4 to 1.8 V and a high linearity performance are achieved.The three-stage VGA with automatic gain control(AGC) and DC offset cancellation(DCOC) is fabricated in a 0.18-μm CMOS technology and shows a linear gain range of more than 58-dB with a linearity error less than ±1 dB.The 3-dB bandwidth is over 8 MHz at all gain settings.The measured input-referred third intercept point(IIP3) of the proposed VGA varies from-18.1 to 13.5 dBm,and the measured noise figure varies from 27 to 65 dB at a frequency of 1 MHz.The dynamic range of the closed-loop AGC exceeds 56 dB,where the output signal-to-noise-and-distortion ratio(SNDR) reaches 20 dB.The whole circuit,occupying 0.3 mm^2 of chip area,dissipates less than 3.7 mA from a 1.8-V supply.展开更多
文摘Mixers in the communication system provide the possibility of encoding and decoding radio-frequency EM waves with signals through the help of local oscillators. A mixer with capability of high conversion gain, good isolation, and good linearity is comparably appreciated. Extensively wide ranges of frequencies, from 5.0 to 18.0 GHz, are to be examined addressing the promising functions of mixers in this study. A TSMC 0.18 μm CMOS model implanted in Agilent ADS is used for the circuit designs. Generated from Gilbert Cell Mixer, the modified circuits take advantage of extra active and passive devices to optimize the conversion gains. Characteristics of high conversion gain over 20 dB or even higher (as high as 29.842 dB at -40 mW RF power at working frequency 6 GHz) and low noise figures (NF) are shown.
文摘A CMOS variable gain amplifier(VGA) that adopts a novel exponential gain approximation is presented.No additional exponential gain control circuit is required in the proposed VGA used in a direct conversion receiver.A wide gain control voltage from 0.4 to 1.8 V and a high linearity performance are achieved.The three-stage VGA with automatic gain control(AGC) and DC offset cancellation(DCOC) is fabricated in a 0.18-μm CMOS technology and shows a linear gain range of more than 58-dB with a linearity error less than ±1 dB.The 3-dB bandwidth is over 8 MHz at all gain settings.The measured input-referred third intercept point(IIP3) of the proposed VGA varies from-18.1 to 13.5 dBm,and the measured noise figure varies from 27 to 65 dB at a frequency of 1 MHz.The dynamic range of the closed-loop AGC exceeds 56 dB,where the output signal-to-noise-and-distortion ratio(SNDR) reaches 20 dB.The whole circuit,occupying 0.3 mm^2 of chip area,dissipates less than 3.7 mA from a 1.8-V supply.