This study developed a new methodology for analyzing the risk level of marine spill accidents from two perspectives,namely,marine traffic density and sensitive resources.Through a case study conducted in Busan,South K...This study developed a new methodology for analyzing the risk level of marine spill accidents from two perspectives,namely,marine traffic density and sensitive resources.Through a case study conducted in Busan,South Korea,detailed procedures of the methodology were proposed and its scalability was confirmed.To analyze the risk from a more detailed and microscopic viewpoint,vessel routes as hazard sources were delineated on the basis of automated identification system(AIS)big data.The outliers and errors of AIS big data were removed using the density-based spatial clustering of applications with noise algorithm,and a marine traffic density map was evaluated by combining all of the gridded routes.Vulnerability of marine environment was identified on the basis of the sensitive resource map constructed by the Korea Coast Guard in a similar manner to the National Oceanic and Atmospheric Administration environmental sensitivity index approach.In this study,aquaculture sites,water intake facilities of power plants,and beach/resort areas were selected as representative indicators for each category.The vulnerability values of neighboring cells decreased according to the Euclidean distance from the resource cells.Two resulting maps were aggregated to construct a final sensitive resource and traffic density(SRTD)risk analysis map of the Busan–Ulsan sea areas.We confirmed the effectiveness of SRTD risk analysis by comparing it with the actual marine spill accident records.Results show that all of the marine spill accidents in 2018 occurred within 2 km of high-risk cells(level 6 and above).Thus,if accident management and monitoring capabilities are concentrated on high-risk cells,which account for only 6.45%of the total study area,then it is expected that it will be possible to cope with most marine spill accidents effectively.展开更多
The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capaci...The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capacity of the pelagic and benthic realms of this Large Marine Ecosystem. Many are the ecological services provided by its waters (fisheries, tourism, aquaculture and fossil fuel reserves) to neighboring countries (US, Mexico and Cuba). However, the unprecedented volumes of hydrocarbons, gas and chemical dispersants (Corexit) introduced in the system, represent ecological stressors whose deleterious effects are still the subject of civil claims and scientific controversy. Presumably, the short scale effects were confined to the Gulf’s northeastern shallow waters, and the combined actions of weathering, biodegradation, and oil recovery left the system almost under pre-spill conditions. Unfortunately, surface and subsurface oil plumes were detected in the spill aftermath, and their dispersion trajectories threatened Mexico EEZ. Surface oil slicks were detected in the pristine waters of northern Yucatán, while subsurface oil plumes from the Macondo’s well blowout were dangerously advancing southwest towards key fishing grounds in the northwestern GoM. This disaster prompted the Mexican government to implement an ambitious ocean monitoring program adopting a bottom-up approach focused on building a base line for more than 42 physicochemical and biological variables for water, sediment and biota from the continental shelf-slope region of the NW GoM. Technological constraints have precluded systematic observations in the vast Mexican EEZ that could discriminate natural variability and oil seep emissions from antropic disturbances. Therefore, preliminary risk analyses relied on seasonal and historical records. Two years of field observations revealed subtle environmental changes in the studied area attributed to antropic disturbances. Waters maintained oligotrophic conditions and zooplankton and benthic infaunal biomass were also poor. Biomarkers in sediments and biota did not exceed EPA’s benchmarks, and sediment’s fingerprinting (δ13C) indicated marine carbon sources. Geomarkers revealed an active transport from the Mississippi towards the NW GoM of phyllosilicates bearing a weathered oil coating. Consequently, shelf and slope sediment toxicity begins to show an increasing trend in the region. The complexity of hydrocarbons bioaccumulation and biodegradation processes in deep waters of the GoM seems to indicate that meso-and large-scale observations may prove to be essential in understanding the capacity of the GoM to recover its ecological stability.展开更多
Fennovoima is planning to build a new nuclear power plant unit-Hanhikivi 1, on a greenfield site in Northern Finland. A nearby maritime oil spill accident is one of the external events analysed in the probabilistic ri...Fennovoima is planning to build a new nuclear power plant unit-Hanhikivi 1, on a greenfield site in Northern Finland. A nearby maritime oil spill accident is one of the external events analysed in the probabilistic risk assessment of the plant. In the worst case, the oil could cause a loss of the ultimate heat sink by blocking the sea water intake screens. By considering the maritime traffic, oil transport and oil spill accident data in the Baltic Sea area, the annual probabilities of nearby, significant oil spills are evaluated. Event tree analysis is used to evaluate the probability that significant amount of oil enters the plant intake tunnel. The spill behaviour is considered, including oil spreading, dissolution, dispersion and movement due to wind and currents. In addition, oil combat measures including the use ofoil booms and skimmers are evaluated.展开更多
基金This research was supported by a grant[KCG-01-2017-01]through the Disaster and Safety Management Institute funded by the Ministry of Public Safety and Securitythe National Research Foundation of Korea(NRF)grant[No.2018R1D1A1B07050208]funded by the Ministry of Science and ICT of Korea Government.
文摘This study developed a new methodology for analyzing the risk level of marine spill accidents from two perspectives,namely,marine traffic density and sensitive resources.Through a case study conducted in Busan,South Korea,detailed procedures of the methodology were proposed and its scalability was confirmed.To analyze the risk from a more detailed and microscopic viewpoint,vessel routes as hazard sources were delineated on the basis of automated identification system(AIS)big data.The outliers and errors of AIS big data were removed using the density-based spatial clustering of applications with noise algorithm,and a marine traffic density map was evaluated by combining all of the gridded routes.Vulnerability of marine environment was identified on the basis of the sensitive resource map constructed by the Korea Coast Guard in a similar manner to the National Oceanic and Atmospheric Administration environmental sensitivity index approach.In this study,aquaculture sites,water intake facilities of power plants,and beach/resort areas were selected as representative indicators for each category.The vulnerability values of neighboring cells decreased according to the Euclidean distance from the resource cells.Two resulting maps were aggregated to construct a final sensitive resource and traffic density(SRTD)risk analysis map of the Busan–Ulsan sea areas.We confirmed the effectiveness of SRTD risk analysis by comparing it with the actual marine spill accident records.Results show that all of the marine spill accidents in 2018 occurred within 2 km of high-risk cells(level 6 and above).Thus,if accident management and monitoring capabilities are concentrated on high-risk cells,which account for only 6.45%of the total study area,then it is expected that it will be possible to cope with most marine spill accidents effectively.
文摘The largest accidental marine oil spill (4.9 million barrels) in the Gulf of Mexico (GoM) seabed (1600 m) caused by the sinking of the Deepwater Horizon oil rig in 2010, put to the test once again the resilient capacity of the pelagic and benthic realms of this Large Marine Ecosystem. Many are the ecological services provided by its waters (fisheries, tourism, aquaculture and fossil fuel reserves) to neighboring countries (US, Mexico and Cuba). However, the unprecedented volumes of hydrocarbons, gas and chemical dispersants (Corexit) introduced in the system, represent ecological stressors whose deleterious effects are still the subject of civil claims and scientific controversy. Presumably, the short scale effects were confined to the Gulf’s northeastern shallow waters, and the combined actions of weathering, biodegradation, and oil recovery left the system almost under pre-spill conditions. Unfortunately, surface and subsurface oil plumes were detected in the spill aftermath, and their dispersion trajectories threatened Mexico EEZ. Surface oil slicks were detected in the pristine waters of northern Yucatán, while subsurface oil plumes from the Macondo’s well blowout were dangerously advancing southwest towards key fishing grounds in the northwestern GoM. This disaster prompted the Mexican government to implement an ambitious ocean monitoring program adopting a bottom-up approach focused on building a base line for more than 42 physicochemical and biological variables for water, sediment and biota from the continental shelf-slope region of the NW GoM. Technological constraints have precluded systematic observations in the vast Mexican EEZ that could discriminate natural variability and oil seep emissions from antropic disturbances. Therefore, preliminary risk analyses relied on seasonal and historical records. Two years of field observations revealed subtle environmental changes in the studied area attributed to antropic disturbances. Waters maintained oligotrophic conditions and zooplankton and benthic infaunal biomass were also poor. Biomarkers in sediments and biota did not exceed EPA’s benchmarks, and sediment’s fingerprinting (δ13C) indicated marine carbon sources. Geomarkers revealed an active transport from the Mississippi towards the NW GoM of phyllosilicates bearing a weathered oil coating. Consequently, shelf and slope sediment toxicity begins to show an increasing trend in the region. The complexity of hydrocarbons bioaccumulation and biodegradation processes in deep waters of the GoM seems to indicate that meso-and large-scale observations may prove to be essential in understanding the capacity of the GoM to recover its ecological stability.
文摘Fennovoima is planning to build a new nuclear power plant unit-Hanhikivi 1, on a greenfield site in Northern Finland. A nearby maritime oil spill accident is one of the external events analysed in the probabilistic risk assessment of the plant. In the worst case, the oil could cause a loss of the ultimate heat sink by blocking the sea water intake screens. By considering the maritime traffic, oil transport and oil spill accident data in the Baltic Sea area, the annual probabilities of nearby, significant oil spills are evaluated. Event tree analysis is used to evaluate the probability that significant amount of oil enters the plant intake tunnel. The spill behaviour is considered, including oil spreading, dissolution, dispersion and movement due to wind and currents. In addition, oil combat measures including the use ofoil booms and skimmers are evaluated.