New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7)...New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7) are obtained. The crystal structures and the physical properties of the compounds are investigated by X-ray powder diffraction, magnetization, conductivity, and dielectricity measurements. The Ba5Y8-xMn4021-1.5x compound is demonstrated to be a Y-deficient solid solution. The solid solution compound Ba5Y8-xMn4021-1.5x crystallizes into tetragonal symmetry with the space group I4/m. Detailed structure analysis by Rietveld refinement of the X-ray powder diffraction data reveals that the Y vacancies occur preferentially at the Y(2) site. Thermal magnetization measurements indicate the presence of antiferromagnetic interaction between Mn ions in the compounds, and temperature-dependent resistivity measurements show that insulator-semiconductor transitions occur around 175 K and 170 K for the Y8 and Y7 samples, respectively. Strong frequency dependences of the dielectric constant are observed above -175 K for the two compounds.展开更多
La 0.5- x Y x Ba 0.5 CoO 3 polycrystals were prepared by solid state reaction. The substituting effects of Y for La on the magnetic and transport properties of the materials were studied systematically...La 0.5- x Y x Ba 0.5 CoO 3 polycrystals were prepared by solid state reaction. The substituting effects of Y for La on the magnetic and transport properties of the materials were studied systematically. The results indicate that substitution of Y induces two effects. Firstly, the charge transfer from Y to 3d orbital of Co happens. This causes the molecular magnetic moment to decrease. Secondly, the antiferromagnetic exchange interaction of Co ions appears. When the content of Y is less than or equal to 30%, the non colinear structure of spins in materials is observed. When the content of Y is greater than 30%, the materials transit from predominant ferromagnetic state to predominant antiferromagnetic one. The conductive mechanism for the materials with different content of Y belongs to the variable range hopping conduction of polarons. The resistivity of materials increases sharply with increasing Y content.展开更多
介绍了低介质常数εr 微波介质陶瓷中复合钙钛矿 Ba(X ,Y) O3系、(Zn,Sn) Ti O4系和 Ba O- Ti O2 系材料的结构和介电特性 ,分析其介电性质随结构和工艺参数的变化规律。以上系列微波介质陶瓷的烧结温度普遍较高 ,传统的介电理论不能完...介绍了低介质常数εr 微波介质陶瓷中复合钙钛矿 Ba(X ,Y) O3系、(Zn,Sn) Ti O4系和 Ba O- Ti O2 系材料的结构和介电特性 ,分析其介电性质随结构和工艺参数的变化规律。以上系列微波介质陶瓷的烧结温度普遍较高 ,传统的介电理论不能完全解释这些材料的损耗机制。今后的发展趋势是利用复合效应来得到εr更高 ,品质因数Q值更高 。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50872148 and 51072225)the National Basic Research Program of China (Grant No. 2007CB925003)
文摘New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7) are obtained. The crystal structures and the physical properties of the compounds are investigated by X-ray powder diffraction, magnetization, conductivity, and dielectricity measurements. The Ba5Y8-xMn4021-1.5x compound is demonstrated to be a Y-deficient solid solution. The solid solution compound Ba5Y8-xMn4021-1.5x crystallizes into tetragonal symmetry with the space group I4/m. Detailed structure analysis by Rietveld refinement of the X-ray powder diffraction data reveals that the Y vacancies occur preferentially at the Y(2) site. Thermal magnetization measurements indicate the presence of antiferromagnetic interaction between Mn ions in the compounds, and temperature-dependent resistivity measurements show that insulator-semiconductor transitions occur around 175 K and 170 K for the Y8 and Y7 samples, respectively. Strong frequency dependences of the dielectric constant are observed above -175 K for the two compounds.
文摘La 0.5- x Y x Ba 0.5 CoO 3 polycrystals were prepared by solid state reaction. The substituting effects of Y for La on the magnetic and transport properties of the materials were studied systematically. The results indicate that substitution of Y induces two effects. Firstly, the charge transfer from Y to 3d orbital of Co happens. This causes the molecular magnetic moment to decrease. Secondly, the antiferromagnetic exchange interaction of Co ions appears. When the content of Y is less than or equal to 30%, the non colinear structure of spins in materials is observed. When the content of Y is greater than 30%, the materials transit from predominant ferromagnetic state to predominant antiferromagnetic one. The conductive mechanism for the materials with different content of Y belongs to the variable range hopping conduction of polarons. The resistivity of materials increases sharply with increasing Y content.