This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technol...This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technology,focusing on analyzing the current application status of computer science and technology in big data,including data storage,data processing,and data analysis.Then,it proposes development strategies for big data processing.Computer science and technology play a vital role in big data processing by providing strong technical support.展开更多
Big data has had significant impacts on our lives,economies,academia and industries over the past decade.The current equations are:What is the future of big data?What era do we live in?This article addresses these que...Big data has had significant impacts on our lives,economies,academia and industries over the past decade.The current equations are:What is the future of big data?What era do we live in?This article addresses these questions by looking at meta as an operation and argues that we are living in the era of big intelligence through analyzing from meta(big data)to big intelligence.More specifically,this article will analyze big data from an evolutionary perspective.The article overviews data,information,knowledge,and intelligence(DIKI)and reveals their relationships.After analyzing meta as an operation,this article explores Meta(DIKE)and its relationship.It reveals 5 Bigs consisting of big data,big information,big knowledge,big intelligence and big analytics.Applying meta on 5 Bigs,this article infers that 4 Big Data 4.0=meta(big data)=big intelligence.This article analyzes how intelligent big analytics support big intelligence.The proposed approach in this research might facilitate the research and development of big data,big data analytics,business intelligence,artificial intelligence,and data science.展开更多
Under the background of the big data era,the education of big data majors is undergoing a profound teaching reform and innovation.With the increasing role of big data technology in analysis and decision-making,updatin...Under the background of the big data era,the education of big data majors is undergoing a profound teaching reform and innovation.With the increasing role of big data technology in analysis and decision-making,updating and expanding the teaching content of big data majors has become particularly important.In the era of big data,modern enterprises have put forward new and higher demands for big data talents,which not only include traditional data analysis skills but also knowledge of data visualization and information technology.To address these challenges,big data education needs to reform and innovate in the development and utilization of teaching content,methods,and resources.This paper proposes teaching models and reform methods for big data majors and analyzes corresponding teaching reforms and innovations to meet the requirements of the new development of big data majors.The traditional classroom teaching method is no longer sufficient to meet the learning needs of students,and more dynamic and interactive teaching methods,such as case studies,flipped classrooms,and project-based learning,are becoming increasingly essential.These innovative teaching methods can more effectively cultivate students’practical operation skills and independent thinking while allowing them to better learn advanced knowledge in a real big-data environment.In addition,the paper also discusses the construction of big data processing and analysis platforms,as well as innovative teaching management and evaluation systems to improve teaching quality.展开更多
Due to the recent explosion of big data, our society has been rapidly going through digital transformation and entering a new world with numerous eye-opening developments. These new trends impact the society and futur...Due to the recent explosion of big data, our society has been rapidly going through digital transformation and entering a new world with numerous eye-opening developments. These new trends impact the society and future jobs, and thus student careers. At the heart of this digital transformation is data science, the discipline that makes sense of big data. With many rapidly emerging digital challenges ahead of us, this article discusses perspectives on iSchools' opportunities and suggestions in data science education. We argue that iSchools should empower their students with "information computing" disciplines, which we define as the ability to solve problems and create values, information, and knowledge using tools in application domains. As specific approaches to enforcing information computing disciplines in data science education, we suggest the three foci of user-based, tool-based, and application- based. These three loci will serve to differentiate the data science education of iSchools from that of computer science or business schools. We present a layered Data Science Education Framework (DSEF) with building blocks that include the three pillars of data science (people, technology, and data), computational thinking, data-driven paradigms, and data science lifecycles. Data science courses built on the top of this framework should thus be executed with user-based, tool-based, and application-based approaches. This framework will help our students think about data science problems from the big picture perspective and foster appropriate problem-solving skills in conjunction with broad perspectives of data science lifecycles. We hope the DSEF discussed in this article will help fellow iSchools in their design of new data science curricula.展开更多
Purpose: The purpose of the paper is to provide a framework for addressing the disconnect between metadata and data science. Data science cannot progress without metadata research.This paper takes steps toward advanc...Purpose: The purpose of the paper is to provide a framework for addressing the disconnect between metadata and data science. Data science cannot progress without metadata research.This paper takes steps toward advancing the synergy between metadata and data science, and identifies pathways for developing a more cohesive metadata research agenda in data science. Design/methodology/approach: This paper identifies factors that challenge metadata research in the digital ecosystem, defines metadata and data science, and presents the concepts big metadata, smart metadata, and metadata capital as part of a metadata lingua franca connecting to data science. Findings: The "utilitarian nature" and "historical and traditional views" of metadata are identified as two intersecting factors that have inhibited metadata research. Big metadata, smart metadata, and metadata capital are presented as part ofa metadata linguafranca to help frame research in the data science research space. Research limitations: There are additional, intersecting factors to consider that likely inhibit metadata research, and other significant metadata concepts to explore. Practical implications: The immediate contribution of this work is that it may elicit response, critique, revision, or, more significantly, motivate research. The work presented can encourage more researchers to consider the significance of metadata as a research worthy topic within data science and the larger digital ecosystem. Originality/value: Although metadata research has not kept pace with other data science topics, there is little attention directed to this problem. This is surprising, given that metadata is essential for data science endeavors. This examination synthesizes original and prior scholarship to provide new grounding for metadata research in data science.展开更多
Based on the perspective of big data,the growth characteristics of marine science and technology talents were analyzed,and the growth of marine science and technology talents was divided into five periods:study period...Based on the perspective of big data,the growth characteristics of marine science and technology talents were analyzed,and the growth of marine science and technology talents was divided into five periods:study period,adaptation period,growth period,promotion period and stability period.Moreover,some suggestions for the training of marine science and technology talents were proposed from the aspects of students,families,schools and society.展开更多
Advances in Information Technology (IT) have enhanced our ability to gather, collect and analyze information from individuals and specific groups of people online. The emergence of online networks has facilitated conn...Advances in Information Technology (IT) have enhanced our ability to gather, collect and analyze information from individuals and specific groups of people online. The emergence of online networks has facilitated connections between individuals by leveraging data exchange in a variety of fields. Online networking in life sciences transforms data collection into actionable information that will improve individual and population health, deliver effective therapies and, consequently, reduce the cost of healthcare. These novel tools might also have a direct impact in personalized medicine programs, since the adoption of new products by health care professionals in life sciences and peer-to-peer learning could be improved using social networks and big data analytics. However, one of the main concerns of information exchange online is data privacy. In this article, we will review how online networks and big data analytics are impacting the life sciences sector.展开更多
In order to conduct research and analysis on the construction of application-oriented undergraduate data science and big data technology courses,the professional development characteristics of universities and enterpr...In order to conduct research and analysis on the construction of application-oriented undergraduate data science and big data technology courses,the professional development characteristics of universities and enterprises should be taken into consideration,the development trend of the big data industry should be scrutinized,and professional application-oriented talents should be cultivated in line with job requirements.This paper expounds the demand for capacity-building professional development in application-oriented undergraduate data science and big data technology courses,conducts research and analysis on the current situation of professional development,and puts forward strategies in hope to provide reference for capacity-building professional development.展开更多
The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size ...The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.展开更多
The advent of the digital age has pointed out the direction for the development of higher education.In this paper,the undergraduate course“Science of Interrogation”is taken as the research subject,the challenges of ...The advent of the digital age has pointed out the direction for the development of higher education.In this paper,the undergraduate course“Science of Interrogation”is taken as the research subject,the challenges of big data teaching reform in universities are analyzed systematically,and concrete measures,such as adhering to the concept of teaching reform under the condition of big data,establishing professional teaching teams,improving the curriculum construction level,emphasizing on being student-centered,and optimizing the reform of the curriculum evaluation system,are proposed to address these challenges.展开更多
Objective To introduce the relevant big data platforms of FDA regulatory sciences and to provide reference for the construction of big data platform for China’s regulatory science under the“14th five-year plan”to d...Objective To introduce the relevant big data platforms of FDA regulatory sciences and to provide reference for the construction of big data platform for China’s regulatory science under the“14th five-year plan”to deepen the reform of medical and health system.Methods A comparative analysis was made on China’s big data for regulatory science after studying the development process,operation mode,practical significance and characteristics of the big data platform for FDA regulatory science,which would help China to establish a perfect big database.Results and Conclusion The construction of big data platform for China’s regulatory science is not comprehensive compared with that in the United States.It is necessary to build data platforms in line with China’s national conditions through efforts in law,talents,standards,and other aspects.展开更多
为了揭示近十年来大数据领域的研究趋势与发展特征,为相关研究提供借鉴和参考。本文使用文献计量学和Vosviewer可视化分析软件,以Web of Science数据库所收集的2010年—2020期间所刊载的研究性论文为样本数据来源,从总体特征上分析大数...为了揭示近十年来大数据领域的研究趋势与发展特征,为相关研究提供借鉴和参考。本文使用文献计量学和Vosviewer可视化分析软件,以Web of Science数据库所收集的2010年—2020期间所刊载的研究性论文为样本数据来源,从总体特征上分析大数据领域的论文发表年度、主要国家及地区、研究机构和作者分布。根据所得关键词与聚类分析,绘制相关知识图谱,以高被引文献为基础,进行作者、机构合作网络关系分析。文献计量结果显示,总体研究规模一直呈现稳步增长趋势,美国在大数据研究领域仍然占据重要地位,中国在近十年来的研究成果同样引人瞩目,但是还存在更进一步的空间;知识图谱归纳出大数据领域相关研究的六大热点领域。分析发现,大数据在医疗健康、高等教育行业的应用正日渐广泛起来;与社交媒体相关的研究也正在不断升温;个人信息保护是大数据时代背景下急需解决的问题。展开更多
Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data...Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data is required by many studies, including those on Earth's limited natural resources, the rapid development of economic and social needs, global change, extreme events, food security, water resources, sustainable economic and urban development, and emergency response. Application operation systems in many ministries and departments in China have entered a stage of sustainable development, and the State Key Project of High-Resolution Earth Observation Systems has been progressing since 2006. Earth observation technology in China has entered a period of rapid development.展开更多
This paper identifies a need to complement the current rich technical and mathematical research agenda on big data with a more information systems and information science strand, which focuses on the business value of...This paper identifies a need to complement the current rich technical and mathematical research agenda on big data with a more information systems and information science strand, which focuses on the business value of big data. An agenda of research for information systems would explore motives for using big data in real organizational contexts, and consider proposed benefits, such as increased effectiveness and efficiency, production of high-quality products/services, creation of added business value, and stimulation of innovation and design. Impacts of such research on the academic community, the industrial and business world, and policy-makers are discussed.展开更多
The journal Genomics, Proteomics & Bioinformatics (GPB) is now inviting submissions for a special issue (to be published in the summer of 2018) on the topic of"Big data in brain science".
Managing large amounts of data is becoming part of everyday life in most organizations. Handling, analyzing, searching, and making predictions from big data is becoming the norm for many organizations of many interest...Managing large amounts of data is becoming part of everyday life in most organizations. Handling, analyzing, searching, and making predictions from big data is becoming the norm for many organizations of many interests. Big data provides the foundations for more benefits and higher values to be extracted from big data. As big data comes with countless benefits, it also comes with many challenges to fulfilling its expectations. Some of those problems haunting big data banks are being termed dirty data. This paper focuses on dirty data while working on an organization’s natural live information system. The author was responsible for studying and analyzing a faltering information system and planning and carrying out the required solutions and fixes. The importance of the work carried out lies in the high level of dirty data observed in the system. Therefore, this paper is based on the part of dirty data—the paper focuses on how the team suffered from dirty data and how it was dealt with.展开更多
We are living in an age of big data,analytics,and artificial intelligence(AI).After reviewing a dozen different books on big data,data analytics,data science,AI,and business intelligence(BI),there are the current ques...We are living in an age of big data,analytics,and artificial intelligence(AI).After reviewing a dozen different books on big data,data analytics,data science,AI,and business intelligence(BI),there are the current questions:(1)What are the relationships between data,analytics,and intelligence?(2)What are the relationships between big data and big data analytics?(3)What is the relationship between BI and data analytics?This article first discusses the heuristics of the Greek philosopher Plato and French mathematician Descartes and how to reshape the world.Then it addresses the above questions based on a Boolean structure,which destructs big data,data analytics,data science,and AI into data,analytics,and intelligence as the Boolean atoms.Data,analytics,and intelligence are reorganized and reassembled,based on the Boolean structure,to data analytics,analytics intelligence,data intelligence,and data analytics intelligence.The research will analyse each of them after examining the system intelligence.The proposed approach in this research might facilitate the research and development of big data,data analytics,AI,and data science.展开更多
文摘This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technology,focusing on analyzing the current application status of computer science and technology in big data,including data storage,data processing,and data analysis.Then,it proposes development strategies for big data processing.Computer science and technology play a vital role in big data processing by providing strong technical support.
基金This research is supported partially by the Papua New Guinea Science and Technology Secretariat(PNGSTS)under the project grant No.1-3962 PNGSTS.
文摘Big data has had significant impacts on our lives,economies,academia and industries over the past decade.The current equations are:What is the future of big data?What era do we live in?This article addresses these questions by looking at meta as an operation and argues that we are living in the era of big intelligence through analyzing from meta(big data)to big intelligence.More specifically,this article will analyze big data from an evolutionary perspective.The article overviews data,information,knowledge,and intelligence(DIKI)and reveals their relationships.After analyzing meta as an operation,this article explores Meta(DIKE)and its relationship.It reveals 5 Bigs consisting of big data,big information,big knowledge,big intelligence and big analytics.Applying meta on 5 Bigs,this article infers that 4 Big Data 4.0=meta(big data)=big intelligence.This article analyzes how intelligent big analytics support big intelligence.The proposed approach in this research might facilitate the research and development of big data,big data analytics,business intelligence,artificial intelligence,and data science.
基金Teaching Reform Project of Beijing Union University“Exploration of Teaching Reform of Big Data Analysis and Visualization Course under the Background of New Engineering”(JJ2024Y025)。
文摘Under the background of the big data era,the education of big data majors is undergoing a profound teaching reform and innovation.With the increasing role of big data technology in analysis and decision-making,updating and expanding the teaching content of big data majors has become particularly important.In the era of big data,modern enterprises have put forward new and higher demands for big data talents,which not only include traditional data analysis skills but also knowledge of data visualization and information technology.To address these challenges,big data education needs to reform and innovate in the development and utilization of teaching content,methods,and resources.This paper proposes teaching models and reform methods for big data majors and analyzes corresponding teaching reforms and innovations to meet the requirements of the new development of big data majors.The traditional classroom teaching method is no longer sufficient to meet the learning needs of students,and more dynamic and interactive teaching methods,such as case studies,flipped classrooms,and project-based learning,are becoming increasingly essential.These innovative teaching methods can more effectively cultivate students’practical operation skills and independent thinking while allowing them to better learn advanced knowledge in a real big-data environment.In addition,the paper also discusses the construction of big data processing and analysis platforms,as well as innovative teaching management and evaluation systems to improve teaching quality.
文摘Due to the recent explosion of big data, our society has been rapidly going through digital transformation and entering a new world with numerous eye-opening developments. These new trends impact the society and future jobs, and thus student careers. At the heart of this digital transformation is data science, the discipline that makes sense of big data. With many rapidly emerging digital challenges ahead of us, this article discusses perspectives on iSchools' opportunities and suggestions in data science education. We argue that iSchools should empower their students with "information computing" disciplines, which we define as the ability to solve problems and create values, information, and knowledge using tools in application domains. As specific approaches to enforcing information computing disciplines in data science education, we suggest the three foci of user-based, tool-based, and application- based. These three loci will serve to differentiate the data science education of iSchools from that of computer science or business schools. We present a layered Data Science Education Framework (DSEF) with building blocks that include the three pillars of data science (people, technology, and data), computational thinking, data-driven paradigms, and data science lifecycles. Data science courses built on the top of this framework should thus be executed with user-based, tool-based, and application-based approaches. This framework will help our students think about data science problems from the big picture perspective and foster appropriate problem-solving skills in conjunction with broad perspectives of data science lifecycles. We hope the DSEF discussed in this article will help fellow iSchools in their design of new data science curricula.
文摘Purpose: The purpose of the paper is to provide a framework for addressing the disconnect between metadata and data science. Data science cannot progress without metadata research.This paper takes steps toward advancing the synergy between metadata and data science, and identifies pathways for developing a more cohesive metadata research agenda in data science. Design/methodology/approach: This paper identifies factors that challenge metadata research in the digital ecosystem, defines metadata and data science, and presents the concepts big metadata, smart metadata, and metadata capital as part of a metadata lingua franca connecting to data science. Findings: The "utilitarian nature" and "historical and traditional views" of metadata are identified as two intersecting factors that have inhibited metadata research. Big metadata, smart metadata, and metadata capital are presented as part ofa metadata linguafranca to help frame research in the data science research space. Research limitations: There are additional, intersecting factors to consider that likely inhibit metadata research, and other significant metadata concepts to explore. Practical implications: The immediate contribution of this work is that it may elicit response, critique, revision, or, more significantly, motivate research. The work presented can encourage more researchers to consider the significance of metadata as a research worthy topic within data science and the larger digital ecosystem. Originality/value: Although metadata research has not kept pace with other data science topics, there is little attention directed to this problem. This is surprising, given that metadata is essential for data science endeavors. This examination synthesizes original and prior scholarship to provide new grounding for metadata research in data science.
基金Supported by Foundation for Humanities and Social Sciences Research Planning of Ministry of Education of Shanghai City(19YJA630058)
文摘Based on the perspective of big data,the growth characteristics of marine science and technology talents were analyzed,and the growth of marine science and technology talents was divided into five periods:study period,adaptation period,growth period,promotion period and stability period.Moreover,some suggestions for the training of marine science and technology talents were proposed from the aspects of students,families,schools and society.
文摘Advances in Information Technology (IT) have enhanced our ability to gather, collect and analyze information from individuals and specific groups of people online. The emergence of online networks has facilitated connections between individuals by leveraging data exchange in a variety of fields. Online networking in life sciences transforms data collection into actionable information that will improve individual and population health, deliver effective therapies and, consequently, reduce the cost of healthcare. These novel tools might also have a direct impact in personalized medicine programs, since the adoption of new products by health care professionals in life sciences and peer-to-peer learning could be improved using social networks and big data analytics. However, one of the main concerns of information exchange online is data privacy. In this article, we will review how online networks and big data analytics are impacting the life sciences sector.
文摘In order to conduct research and analysis on the construction of application-oriented undergraduate data science and big data technology courses,the professional development characteristics of universities and enterprises should be taken into consideration,the development trend of the big data industry should be scrutinized,and professional application-oriented talents should be cultivated in line with job requirements.This paper expounds the demand for capacity-building professional development in application-oriented undergraduate data science and big data technology courses,conducts research and analysis on the current situation of professional development,and puts forward strategies in hope to provide reference for capacity-building professional development.
基金supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1A2C1006159)and(NRF-2021R1A6A1A03039493)by the 2021 Yeungnam University Research Grant.
文摘The networks are fundamental to our modern world and they appear throughout science and society.Access to a massive amount of data presents a unique opportunity to the researcher’s community.As networks grow in size the complexity increases and our ability to analyze them using the current state of the art is at severe risk of failing to keep pace.Therefore,this paper initiates a discussion on graph signal processing for large-scale data analysis.We first provide a comprehensive overview of core ideas in Graph signal processing(GSP)and their connection to conventional digital signal processing(DSP).We then summarize recent developments in developing basic GSP tools,including methods for graph filtering or graph learning,graph signal,graph Fourier transform(GFT),spectrum,graph frequency,etc.Graph filtering is a basic task that allows for isolating the contribution of individual frequencies and therefore enables the removal of noise.We then consider a graph filter as a model that helps to extend the application of GSP methods to large datasets.To show the suitability and the effeteness,we first created a noisy graph signal and then applied it to the filter.After several rounds of simulation results.We see that the filtered signal appears to be smoother and is closer to the original noise-free distance-based signal.By using this example application,we thoroughly demonstrated that graph filtration is efficient for big data analytics.
基金This work was supported by the Education and Teaching Reform Research Project of Jiangsu Police Institute(No.2022B12)Qinglan Project for Jiangsu Province。
文摘The advent of the digital age has pointed out the direction for the development of higher education.In this paper,the undergraduate course“Science of Interrogation”is taken as the research subject,the challenges of big data teaching reform in universities are analyzed systematically,and concrete measures,such as adhering to the concept of teaching reform under the condition of big data,establishing professional teaching teams,improving the curriculum construction level,emphasizing on being student-centered,and optimizing the reform of the curriculum evaluation system,are proposed to address these challenges.
文摘Objective To introduce the relevant big data platforms of FDA regulatory sciences and to provide reference for the construction of big data platform for China’s regulatory science under the“14th five-year plan”to deepen the reform of medical and health system.Methods A comparative analysis was made on China’s big data for regulatory science after studying the development process,operation mode,practical significance and characteristics of the big data platform for FDA regulatory science,which would help China to establish a perfect big database.Results and Conclusion The construction of big data platform for China’s regulatory science is not comprehensive compared with that in the United States.It is necessary to build data platforms in line with China’s national conditions through efforts in law,talents,standards,and other aspects.
文摘为了揭示近十年来大数据领域的研究趋势与发展特征,为相关研究提供借鉴和参考。本文使用文献计量学和Vosviewer可视化分析软件,以Web of Science数据库所收集的2010年—2020期间所刊载的研究性论文为样本数据来源,从总体特征上分析大数据领域的论文发表年度、主要国家及地区、研究机构和作者分布。根据所得关键词与聚类分析,绘制相关知识图谱,以高被引文献为基础,进行作者、机构合作网络关系分析。文献计量结果显示,总体研究规模一直呈现稳步增长趋势,美国在大数据研究领域仍然占据重要地位,中国在近十年来的研究成果同样引人瞩目,但是还存在更进一步的空间;知识图谱归纳出大数据领域相关研究的六大热点领域。分析发现,大数据在医疗健康、高等教育行业的应用正日渐广泛起来;与社交媒体相关的研究也正在不断升温;个人信息保护是大数据时代背景下急需解决的问题。
文摘Human beings are now facing global and regional sustainable development challenges.In China, Earth observation data play a fundamental role in Earth system science research. The support given by Earth observation data is required by many studies, including those on Earth's limited natural resources, the rapid development of economic and social needs, global change, extreme events, food security, water resources, sustainable economic and urban development, and emergency response. Application operation systems in many ministries and departments in China have entered a stage of sustainable development, and the State Key Project of High-Resolution Earth Observation Systems has been progressing since 2006. Earth observation technology in China has entered a period of rapid development.
文摘This paper identifies a need to complement the current rich technical and mathematical research agenda on big data with a more information systems and information science strand, which focuses on the business value of big data. An agenda of research for information systems would explore motives for using big data in real organizational contexts, and consider proposed benefits, such as increased effectiveness and efficiency, production of high-quality products/services, creation of added business value, and stimulation of innovation and design. Impacts of such research on the academic community, the industrial and business world, and policy-makers are discussed.
文摘The journal Genomics, Proteomics & Bioinformatics (GPB) is now inviting submissions for a special issue (to be published in the summer of 2018) on the topic of"Big data in brain science".
文摘Managing large amounts of data is becoming part of everyday life in most organizations. Handling, analyzing, searching, and making predictions from big data is becoming the norm for many organizations of many interests. Big data provides the foundations for more benefits and higher values to be extracted from big data. As big data comes with countless benefits, it also comes with many challenges to fulfilling its expectations. Some of those problems haunting big data banks are being termed dirty data. This paper focuses on dirty data while working on an organization’s natural live information system. The author was responsible for studying and analyzing a faltering information system and planning and carrying out the required solutions and fixes. The importance of the work carried out lies in the high level of dirty data observed in the system. Therefore, this paper is based on the part of dirty data—the paper focuses on how the team suffered from dirty data and how it was dealt with.
基金supported partially by the Papua New Guinea Science and Technology Secretariat(PNGSTS)under the project grant No.1-3962 PNGSTS.
文摘We are living in an age of big data,analytics,and artificial intelligence(AI).After reviewing a dozen different books on big data,data analytics,data science,AI,and business intelligence(BI),there are the current questions:(1)What are the relationships between data,analytics,and intelligence?(2)What are the relationships between big data and big data analytics?(3)What is the relationship between BI and data analytics?This article first discusses the heuristics of the Greek philosopher Plato and French mathematician Descartes and how to reshape the world.Then it addresses the above questions based on a Boolean structure,which destructs big data,data analytics,data science,and AI into data,analytics,and intelligence as the Boolean atoms.Data,analytics,and intelligence are reorganized and reassembled,based on the Boolean structure,to data analytics,analytics intelligence,data intelligence,and data analytics intelligence.The research will analyse each of them after examining the system intelligence.The proposed approach in this research might facilitate the research and development of big data,data analytics,AI,and data science.