背景:程序性细胞死亡受体1(programmed death receptor-1,PD-1)在高糖环境下影响骨髓间充质干细胞成骨分化的作用机制尚不清楚。目的:探讨高糖环境中PD-1对大鼠骨髓间充质干细胞成骨分化的影响及其调控机制。方法:将大鼠骨髓间充质干细...背景:程序性细胞死亡受体1(programmed death receptor-1,PD-1)在高糖环境下影响骨髓间充质干细胞成骨分化的作用机制尚不清楚。目的:探讨高糖环境中PD-1对大鼠骨髓间充质干细胞成骨分化的影响及其调控机制。方法:将大鼠骨髓间充质干细胞随机分为正常糖组(5.6 mmol/L)、高糖组(30 mmol/L)、PD-1过表达组、PD-1过表达空载组、PD-1敲低组、PD-1敲低空载组、PI3K/AKT通路抑制剂组(PD-1敲低+5μmol/L LY294002)。通过在高糖培养基中培养大鼠骨髓间充质干细胞来模拟体外糖尿病环境,采用qRT-PCR检测大鼠骨髓间充质干细胞中PD-1及其配体PD-L1和成骨标志物Runx2、OSX的mRNA表达,采用碱性磷酸酶染色和茜素红S染色观察成骨分化能力,采用CCK-8检测细胞增殖情况,采用Western blot检测PD-1、PD-L1、p-PI3K、p-AKT的蛋白表达。结果与结论:①高糖组PD-1及PD-L1表达显著高于正常糖组,高糖组骨髓间充质干细胞的成骨分化能力较正常糖组显著下降;②敲低PD-1表达可以促进骨髓间充质干细胞的成骨分化、增加细胞增殖活性,同时激活PI3K/AKT通路;③加入PI3K/AKT通路抑制剂LY294002后,骨髓间充质干细胞成骨分化能力显著下降。结果表明:PD-1依赖于PI3K/AKT信号通路抑制高糖环境下大鼠骨髓间充质干细胞的成骨分化。展开更多
Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting t...Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting the repeated surveys of dissolved oxygen(DO) and other relevant hydrographic parameters along the section from the Changjiang River Estuary to the Jeju-do in the summer from 1997 to 2014,rather different trends were revealed for the dual low-DO cores.The nearshore low-DO core,located close to the river mouth and relatively stable,shows that hypoxia has become more severe with the lowest DO descen ding at a rate of -0.07 mg/(L·a) and the thickness of low-DO zone rising at a rate of 0.43 m/a.The offshore core,centered around 40-m isobath but moving back and forth between 123.5°-125°E,shows large fluctuations in the minimum DO concentration,with the thickness of low-DO zone falling at a rate of -1.55 m/a.The probable factors affecting the minimum DO concentration in the two regions also vary.In the nearshore region,the decreasing minimum DO is driven by the increase in both stratification and primary productivity,with the enhanced extension of the Changjiang River Diluted Water(CDW) strengthening stratification.In the offshore region,the fluctuating trend of the minimum DO concentration indicates that both DO loss and DO supplement are distinct.The DO loss is primarily attributed to bottom apparent oxygen utilization caused by the organic matter decay and is also relevant to the advection of low-DO water from the nearshore region.The DO supplement is primarily due to weakened stratification.Our analysis also shows that the minimum DO concentration in the nearshore region was extremely low in 1998,2003,2007 and 2010,related to El Ni?o signal in these summers.展开更多
The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Ther...The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.展开更多
基金The National Key Research&Development Program of China under contract No.2023YFC3108003 in Project No.2023YFC3108000the National Natural Science Foundation of China under contract No.41876026+3 种基金the Scientific Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources under contract No.YJJC2201the National Programme on Global Change and Air–Sea Interaction Phase Ⅱ under contract No.GASI-01-CJKthe Zhejiang Provincial Ten Thousand Talents Program under contract No.2020R52038the Project of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOEDZZ2105。
文摘Hypoxia off the Changjiang River Estuary has been the subject of much attention,yet systematic observations have been lacking,resulting in a lack of knowledge regarding its long-term change and drivers.By revisiting the repeated surveys of dissolved oxygen(DO) and other relevant hydrographic parameters along the section from the Changjiang River Estuary to the Jeju-do in the summer from 1997 to 2014,rather different trends were revealed for the dual low-DO cores.The nearshore low-DO core,located close to the river mouth and relatively stable,shows that hypoxia has become more severe with the lowest DO descen ding at a rate of -0.07 mg/(L·a) and the thickness of low-DO zone rising at a rate of 0.43 m/a.The offshore core,centered around 40-m isobath but moving back and forth between 123.5°-125°E,shows large fluctuations in the minimum DO concentration,with the thickness of low-DO zone falling at a rate of -1.55 m/a.The probable factors affecting the minimum DO concentration in the two regions also vary.In the nearshore region,the decreasing minimum DO is driven by the increase in both stratification and primary productivity,with the enhanced extension of the Changjiang River Diluted Water(CDW) strengthening stratification.In the offshore region,the fluctuating trend of the minimum DO concentration indicates that both DO loss and DO supplement are distinct.The DO loss is primarily attributed to bottom apparent oxygen utilization caused by the organic matter decay and is also relevant to the advection of low-DO water from the nearshore region.The DO supplement is primarily due to weakened stratification.Our analysis also shows that the minimum DO concentration in the nearshore region was extremely low in 1998,2003,2007 and 2010,related to El Ni?o signal in these summers.
基金Supported by the Innovation Team Project of Ecological Environment Monitoring and Restoration of Fishery Waters in the East China Sea of the Chinese Academy of Fishery Sciences(No.2020TD14)the National Basic Research Program of China(973 Program)(No.2010CB429005)。
文摘The estuarine areas are under frequent influence from freshwater intrusion and ocean currents,in which zooplankton species are diversified and variable as they are sensitive to physio-chemical variations in water.Therefore,understanding the relationships between zooplankton and environmental factors help us know the water quality.To achieve co-existence with species in similar ecological group or habit,they could inevitably alter themselves to fit the ecology and adjust the function according to the competitive exclusion in ecological theory.However,information of the co-existence of dominant species in the Changjiang(Yangtze)River estuary(CRE)and adjacent waters remains scarce.We explored the relationships between dominant zooplankton and environmental factors in the study region in spring-summer from 2016 to 2020,involving particularly the composition of dominant species,ecological groups,their relationships with environmental factors,and co-existence of important species,using the non-multidimensional scale analysis(nMDS)method and redundancy analysis.Results show that Labidocera euchaeta and Tortanus vermiculus were dominant species in the study scope.The turnover rate of dominant zooplankton was greater(>50%)in spring while the species number was higher in summer.The dominant species were estuarine,offshore,and eurytopic based on the adaptation to salinity.In spring,the ecological groups were dominated by estuarine species,while in summer by estuarine and offshore species.In addition,the nMDS showed that the dominant species in the same ecological group were more dispersed and not prominently clustered;the dominant species were staggered among different ecological groups.The temperature,salinity,pH,dissolved oxygen,and chlorophyll a were the main environmental factors on the distribution of the dominant species in spring,while in summer were dissolved oxygen,temperature,salinity,and pH.The domination of medusae of Nemopsis bachei and Pleurobrachia globosa in zooplankton community in spring,and the continuous decrease in abundance of L.euchaeta reflected the effects of local climate change.The temperature and salinity changes in different years and the subsequent response of zooplankton reflected the influence of freshwater intrusion and/or ocean currents.Zooplankton in similar ecological habits exhibited the competitive exclusion in terms of co-existence.