期刊文献+
共找到245,303篇文章
< 1 2 250 >
每页显示 20 50 100
Multiframe-integrated, in-sensor computing using persistent photoconductivity 被引量:1
1
作者 Xiaoyong Jiang Minrui Ye +7 位作者 Yunhai Li Xiao Fu Tangxin Li Qixiao Zhao Jinjin Wang Tao Zhang Jinshui Miao Zengguang Cheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期36-41,共6页
The utilization of processing capabilities within the detector holds significant promise in addressing energy consumption and latency challenges. Especially in the context of dynamic motion recognition tasks, where su... The utilization of processing capabilities within the detector holds significant promise in addressing energy consumption and latency challenges. Especially in the context of dynamic motion recognition tasks, where substantial data transfers are necessitated by the generation of extensive information and the need for frame-by-frame analysis. Herein, we present a novel approach for dynamic motion recognition, leveraging a spatial-temporal in-sensor computing system rooted in multiframe integration by employing photodetector. Our approach introduced a retinomorphic MoS_(2) photodetector device for motion detection and analysis. The device enables the generation of informative final states, nonlinearly embedding both past and present frames. Subsequent multiply-accumulate (MAC) calculations are efficiently performed as the classifier. When evaluating our devices for target detection and direction classification, we achieved an impressive recognition accuracy of 93.5%. By eliminating the need for frame-by-frame analysis, our system not only achieves high precision but also facilitates energy-efficient in-sensor computing. 展开更多
关键词 in-sensor MOS2 PHOTODETECTOR persistent photoconductivity reservoir computing
下载PDF
Recent Advances in In-Memory Computing:Exploring Memristor and Memtransistor Arrays with 2D Materials 被引量:1
2
作者 Hangbo Zhou Sifan Li +1 位作者 Kah-Wee Ang Yong-Wei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期1-30,共30页
The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising altern... The conventional computing architecture faces substantial chal-lenges,including high latency and energy consumption between memory and processing units.In response,in-memory computing has emerged as a promising alternative architecture,enabling computing operations within memory arrays to overcome these limitations.Memristive devices have gained significant attention as key components for in-memory computing due to their high-density arrays,rapid response times,and ability to emulate biological synapses.Among these devices,two-dimensional(2D)material-based memristor and memtransistor arrays have emerged as particularly promising candidates for next-generation in-memory computing,thanks to their exceptional performance driven by the unique properties of 2D materials,such as layered structures,mechanical flexibility,and the capability to form heterojunctions.This review delves into the state-of-the-art research on 2D material-based memristive arrays,encompassing critical aspects such as material selection,device perfor-mance metrics,array structures,and potential applications.Furthermore,it provides a comprehensive overview of the current challenges and limitations associated with these arrays,along with potential solutions.The primary objective of this review is to serve as a significant milestone in realizing next-generation in-memory computing utilizing 2D materials and bridge the gap from single-device characterization to array-level and system-level implementations of neuromorphic computing,leveraging the potential of 2D material-based memristive devices. 展开更多
关键词 2D materials MEMRISTORS Memtransistors Crossbar array In-memory computing
下载PDF
IRS Assisted UAV Communications against Proactive Eavesdropping in Mobile Edge Computing Networks 被引量:1
3
作者 Ying Zhang Weiming Niu Leibing Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期885-902,共18页
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ... In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes. 展开更多
关键词 Mobile edge computing(MEC) unmanned aerial vehicle(UAV) intelligent reflecting surface(IRS) zero forcing(ZF)
下载PDF
Computing Power Network:A Survey
4
作者 Sun Yukun Lei Bo +4 位作者 Liu Junlin Huang Haonan Zhang Xing Peng Jing Wang Wenbo 《China Communications》 SCIE CSCD 2024年第9期109-145,共37页
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these... With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well. 展开更多
关键词 computing power modeling computing power network computing power scheduling information awareness network forwarding
下载PDF
ATSSC:An Attack Tolerant System in Serverless Computing
5
作者 Zhang Shuai Guo Yunfei +2 位作者 Hu Hongchao Liu Wenyan Wang Yawen 《China Communications》 SCIE CSCD 2024年第6期192-205,共14页
Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are ... Serverless computing is a promising paradigm in cloud computing that greatly simplifies cloud programming.With serverless computing,developers only provide function code to serverless platform,and these functions are invoked by its driven events.Nonetheless,security threats in serverless computing such as vulnerability-based security threats have become the pain point hindering its wide adoption.The ideas in proactive defense such as redundancy,diversity and dynamic provide promising approaches to protect against cyberattacks.However,these security technologies are mostly applied to serverless platform based on“stacked”mode,as they are designed independent with serverless computing.The lack of security consideration in the initial design makes it especially challenging to achieve the all life cycle protection for serverless application with limited cost.In this paper,we present ATSSC,a proactive defense enabled attack tolerant serverless platform.ATSSC integrates the characteristic of redundancy,diversity and dynamic into serverless seamless to achieve high-level security and efficiency.Specifically,ATSSC constructs multiple diverse function replicas to process the driven events and performs cross-validation to verify the results.In order to create diverse function replicas,both software diversity and environment diversity are adopted.Furthermore,a dynamic function refresh strategy is proposed to keep the clean state of serverless functions.We implement ATSSC based on Kubernetes and Knative.Analysis and experimental results demonstrate that ATSSC can effectively protect serverless computing against cyberattacks with acceptable costs. 展开更多
关键词 active defense attack tolerant cloud computing SECURITY serverless computing
下载PDF
Task Offloading in Edge Computing Using GNNs and DQN
6
作者 Asier Garmendia-Orbegozo Jose David Nunez-Gonzalez Miguel Angel Anton 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2649-2671,共23页
In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer t... In a network environment composed of different types of computing centers that can be divided into different layers(clod,edge layer,and others),the interconnection between them offers the possibility of peer-to-peer task offloading.For many resource-constrained devices,the computation of many types of tasks is not feasible because they cannot support such computations as they do not have enough available memory and processing capacity.In this scenario,it is worth considering transferring these tasks to resource-rich platforms,such as Edge Data Centers or remote cloud servers.For different reasons,it is more exciting and appropriate to download various tasks to specific download destinations depending on the properties and state of the environment and the nature of the functions.At the same time,establishing an optimal offloading policy,which ensures that all tasks are executed within the required latency and avoids excessive workload on specific computing centers is not easy.This study presents two alternatives to solve the offloading decision paradigm by introducing two well-known algorithms,Graph Neural Networks(GNN)and Deep Q-Network(DQN).It applies the alternatives on a well-known Edge Computing simulator called PureEdgeSimand compares them with the two defaultmethods,Trade-Off and Round Robin.Experiments showed that variants offer a slight improvement in task success rate and workload distribution.In terms of energy efficiency,they provided similar results.Finally,the success rates of different computing centers are tested,and the lack of capacity of remote cloud servers to respond to applications in real-time is demonstrated.These novel ways of finding a download strategy in a local networking environment are unique as they emulate the state and structure of the environment innovatively,considering the quality of its connections and constant updates.The download score defined in this research is a crucial feature for determining the quality of a download path in the GNN training process and has not previously been proposed.Simultaneously,the suitability of Reinforcement Learning(RL)techniques is demonstrated due to the dynamism of the network environment,considering all the key factors that affect the decision to offload a given task,including the actual state of all devices. 展开更多
关键词 Edge computing edge offloading fog computing task offloading
下载PDF
Advances in neuromorphic computing:Expanding horizons for AI development through novel artificial neurons and in-sensor computing
7
作者 杨玉波 赵吉哲 +11 位作者 刘胤洁 华夏扬 王天睿 郑纪元 郝智彪 熊兵 孙长征 韩彦军 王健 李洪涛 汪莱 罗毅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期1-23,共23页
AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by ... AI development has brought great success to upgrading the information age.At the same time,the large-scale artificial neural network for building AI systems is thirsty for computing power,which is barely satisfied by the conventional computing hardware.In the post-Moore era,the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits(VLSIC)is challenging to meet the growing demand for AI computing power.To address the issue,technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture,and dealing with AI algorithms much more parallelly and energy efficiently.Inspired by the human neural network architecture,neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices.Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network(SNN),the development in this field has incubated promising technologies like in-sensor computing,which brings new opportunities for multidisciplinary research,including the field of optoelectronic materials and devices,artificial neural networks,and microelectronics integration technology.The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing.This paper reviews firstly the architectures and algorithms of SNN,and artificial neuron devices supporting neuromorphic computing,then the recent progress of in-sensor computing vision chips,which all will promote the development of AI. 展开更多
关键词 neuromorphic computing spiking neural network(SNN) in-sensor computing artificial intelligence
下载PDF
Complementary memtransistors for neuromorphic computing: How, what and why
8
作者 Qi Chen Yue Zhou +4 位作者 Weiwei Xiong Zirui Chen Yasai Wang Xiangshui Miao Yuhui He 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期64-80,共17页
Memtransistors in which the source-drain channel conductance can be nonvolatilely manipulated through the gate signals have emerged as promising components for implementing neuromorphic computing.On the other side,it ... Memtransistors in which the source-drain channel conductance can be nonvolatilely manipulated through the gate signals have emerged as promising components for implementing neuromorphic computing.On the other side,it is known that the complementary metal-oxide-semiconductor(CMOS)field effect transistors have played the fundamental role in the modern integrated circuit technology.Therefore,will complementary memtransistors(CMT)also play such a role in the future neuromorphic circuits and chips?In this review,various types of materials and physical mechanisms for constructing CMT(how)are inspected with their merits and need-to-address challenges discussed.Then the unique properties(what)and poten-tial applications of CMT in different learning algorithms/scenarios of spiking neural networks(why)are reviewed,including super-vised rule,reinforcement one,dynamic vision with in-sensor computing,etc.Through exploiting the complementary structure-related novel functions,significant reduction of hardware consuming,enhancement of energy/efficiency ratio and other advan-tages have been gained,illustrating the alluring prospect of design technology co-optimization(DTCO)of CMT towards neuro-morphic computing. 展开更多
关键词 complementary memtransistor neuromorphic computing reward-modulated spike timing-dependent plasticity remote supervise method in-sensor computing
下载PDF
Secure and Efficient Outsourced Computation in Cloud Computing Environments
9
作者 Varun Dixit Davinderjit Kaur 《Journal of Software Engineering and Applications》 2024年第9期750-762,共13页
Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodo... Secure and efficient outsourced computation in cloud computing environments is crucial for ensuring data confidentiality, integrity, and resource optimization. In this research, we propose novel algorithms and methodologies to address these challenges. Through a series of experiments, we evaluate the performance, security, and efficiency of the proposed algorithms in real-world cloud environments. Our results demonstrate the effectiveness of homomorphic encryption-based secure computation, secure multiparty computation, and trusted execution environment-based approaches in mitigating security threats while ensuring efficient resource utilization. Specifically, our homomorphic encryption-based algorithm exhibits encryption times ranging from 20 to 1000 milliseconds and decryption times ranging from 25 to 1250 milliseconds for payload sizes varying from 100 KB to 5000 KB. Furthermore, our comparative analysis against state-of-the-art solutions reveals the strengths of our proposed algorithms in terms of security guarantees, encryption overhead, and communication latency. 展开更多
关键词 Secure computation Cloud computing Homomorphic Encryption Secure Multiparty computation Resource Optimization
下载PDF
Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
10
作者 Tong Minglei Li Song +1 位作者 Han Wanjiang Wang Xiaoxiang 《China Communications》 SCIE CSCD 2024年第3期230-246,共17页
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ... Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes. 展开更多
关键词 computing resource allocation mobile edge computing satellite-terrestrial networks task offloading decision
下载PDF
Hybrid Approach for Cost Efficient Application Placement in Fog-Cloud Computing Environments
11
作者 Abdulelah Alwabel Chinmaya Kumar Swain 《Computers, Materials & Continua》 SCIE EI 2024年第6期4127-4148,共22页
Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.How... Fog computing has recently developed as a new paradigm with the aim of addressing time-sensitive applications better than with cloud computing by placing and processing tasks in close proximity to the data sources.However,the majority of the fog nodes in this environment are geographically scattered with resources that are limited in terms of capabilities compared to cloud nodes,thus making the application placement problem more complex than that in cloud computing.An approach for cost-efficient application placement in fog-cloud computing environments that combines the benefits of both fog and cloud computing to optimize the placement of applications and services while minimizing costs.This approach is particularly relevant in scenarios where latency,resource constraints,and cost considerations are crucial factors for the deployment of applications.In this study,we propose a hybrid approach that combines a genetic algorithm(GA)with the Flamingo Search Algorithm(FSA)to place application modules while minimizing cost.We consider four cost-types for application deployment:Computation,communication,energy consumption,and violations.The proposed hybrid approach is called GA-FSA and is designed to place the application modules considering the deadline of the application and deploy them appropriately to fog or cloud nodes to curtail the overall cost of the system.An extensive simulation is conducted to assess the performance of the proposed approach compared to other state-of-the-art approaches.The results demonstrate that GA-FSA approach is superior to the other approaches with respect to task guarantee ratio(TGR)and total cost. 展开更多
关键词 Placement mechanism application module placement fog computing cloud computing genetic algorithm flamingo search algorithm
下载PDF
Guest Editorial:Special issue on trustworthy machine learning for behavioural and social computing
12
作者 Zhi-Hui Zhan Jianxin Li +1 位作者 Xuyun Zhang Deepak Puthal 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期541-543,共3页
Machine learning has been extensively applied in behavioural and social computing,encompassing a spectrum of applications such as social network analysis,click stream analysis,recommendation of points of interest,and ... Machine learning has been extensively applied in behavioural and social computing,encompassing a spectrum of applications such as social network analysis,click stream analysis,recommendation of points of interest,and sentiment analysis.The datasets pertinent to these applications are inherently linked to human behaviour and societal dynamics,posing a risk of disclosing personal or sensitive information if mishandled or subjected to attacks. 展开更多
关键词 computing HANDLE learning
下载PDF
Exploring reservoir computing:Implementation via double stochastic nanowire networks
13
作者 唐健峰 夏磊 +3 位作者 李广隶 付军 段书凯 王丽丹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期572-582,共11页
Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data ana... Neuromorphic computing,inspired by the human brain,uses memristor devices for complex tasks.Recent studies show that self-organizing random nanowires can implement neuromorphic information processing,enabling data analysis.This paper presents a model based on these nanowire networks,with an improved conductance variation profile.We suggest using these networks for temporal information processing via a reservoir computing scheme and propose an efficient data encoding method using voltage pulses.The nanowire network layer generates dynamic behaviors for pulse voltages,allowing time series prediction analysis.Our experiment uses a double stochastic nanowire network architecture for processing multiple input signals,outperforming traditional reservoir computing in terms of fewer nodes,enriched dynamics and improved prediction accuracy.Experimental results confirm the high accuracy of this architecture on multiple real-time series datasets,making neuromorphic nanowire networks promising for physical implementation of reservoir computing. 展开更多
关键词 double-layer stochastic(DS)nanowire network architecture neuromorphic computation nanowire network reservoir computing time series prediction
下载PDF
Delayed-measurement one-way quantum computing on cloud quantum computer
14
作者 Zhi-Peng Yang Yu-Ran Zhang +1 位作者 Fu-Li Li Heng Fan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期125-131,共7页
One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap... One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation. 展开更多
关键词 measurement-based QUANTUM computing QUANTUM ENTANGLEMENT QUANTUM GATES
下载PDF
A Novel Scheduling Framework for Multi-Programming Quantum Computing in Cloud Environment
15
作者 Danyang Zheng Jinchen Xv +3 位作者 Feng Yue Qiming Du ZhihengWang Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第5期1957-1974,共18页
As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources ha... As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources has led to a scarcity,which in turn hampers users from achieving optimal satisfaction.Therefore,cloud quantum computing service providers require a unified analysis and scheduling framework for their quantumresources and user jobs to meet the ever-growing usage demands.This paper introduces a new multi-programming scheduling framework for quantum computing in a cloud environment.The framework addresses the issue of limited quantum computing resources in cloud environments and ensures a satisfactory user experience.It introduces three innovative designs:1)Our framework automatically allocates tasks to different quantum backends while ensuring fairness among users by considering both the cloud-based quantum resources and the user-submitted tasks.2)Multi-programming mechanism is employed across different quantum backends to enhance the overall throughput of the quantum cloud.In comparison to conventional task schedulers,our proposed framework achieves a throughput improvement of more than two-fold in the quantum cloud.3)The framework can balance fidelity and user waiting time by adaptively adjusting scheduling parameters. 展开更多
关键词 Quantum computing SCHEDULING multi-programming qubit mapping
下载PDF
Air-Ground Collaborative Mobile Edge Computing:Architecture,Challenges,and Opportunities
16
作者 Qin Zhen He Shoushuai +5 位作者 Wang Hai Qu Yuben Dai Haipeng Xiong Fei Wei Zhenhua Li Hailong 《China Communications》 SCIE CSCD 2024年第5期1-16,共16页
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow... By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC. 展开更多
关键词 air-ground ARCHITECTURE COLLABORATIVE mobile edge computing
下载PDF
A Secure and Cost-Effective Training Framework Atop Serverless Computing for Object Detection in Blasting
17
作者 Tianming Zhang Zebin Chen +4 位作者 Haonan Guo Bojun Ren Quanmin Xie Mengke Tian Yong Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2139-2154,共16页
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ... The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS. 展开更多
关键词 Serverless computing object detection BLASTING
下载PDF
UAV-assisted cooperative offloading energy efficiency system for mobile edge computing
18
作者 Xue-Yong Yu Wen-Jin Niu +1 位作者 Ye Zhu Hong-Bo Zhu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期16-24,共9页
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat... Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes. 展开更多
关键词 computation offloading Internet of things(IoT) Mobile edge computing(MEC) Block coordinate descent(BCD)
下载PDF
Parallel Computing Based Solution for Reliability-constrained Distribution Network Planning
19
作者 Yaqi Sun Wenchuan Wu +2 位作者 Yi Lin Hai Huang Hao Chen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1147-1158,共12页
The main goal of distribution network(DN)expan-sion planning is essentially to achieve minimal investment con-strained by specified reliability requirements.The reliability-constrained distribution network planning(Rc... The main goal of distribution network(DN)expan-sion planning is essentially to achieve minimal investment con-strained by specified reliability requirements.The reliability-constrained distribution network planning(RcDNP)problem can be cast as an instance of mixed-integer linear programming(MILP)which involves ultra-heavy computation burden espe-cially for large-scale DNs.In this paper,we propose a parallel computing based solution method for the RcDNP problem.The RcDNP is decomposed into a backbone grid and several lateral grid problems with coordination.Then,a parallelizable aug-mented Lagrangian algorithm with acceleration method is devel-oped to solve the coordination planning problems.The lateral grid problems are solved in parallel through coordinating with the backbone grid planning problem.Gauss-Seidel iteration is adopted on the subset of the convex hull of the feasible region constructed by decomposition.Under mild conditions,the opti-mality and convergence of the proposed method are verified.Numerical tests show that the proposed method can significant-ly reduce the solution time and make the RcDNP applicable for real-worldproblems. 展开更多
关键词 Distribution network expansion planning RELIABILITY parallel computing
原文传递
IoT Task Offloading in Edge Computing Using Non-Cooperative Game Theory for Healthcare Systems
20
作者 Dinesh Mavaluru Chettupally Anil Carie +4 位作者 Ahmed I.Alutaibi Satish Anamalamudi Bayapa Reddy Narapureddy Murali Krishna Enduri Md Ezaz Ahmed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1487-1503,共17页
In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises e... In this paper,we present a comprehensive system model for Industrial Internet of Things(IIoT)networks empowered by Non-Orthogonal Multiple Access(NOMA)and Mobile Edge Computing(MEC)technologies.The network comprises essential components such as base stations,edge servers,and numerous IIoT devices characterized by limited energy and computing capacities.The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption.The system operates in discrete time slots and employs a quasi-static approach,with a specific focus on the complexities of task partitioning and the management of constrained resources within the IIoT context.This study makes valuable contributions to the field by enhancing the understanding of resourceefficient management and task allocation,particularly relevant in real-time industrial applications.Experimental results indicate that our proposed algorithmsignificantly outperforms existing approaches,reducing queue backlog by 45.32% and 17.25% compared to SMRA and ACRA while achieving a 27.31% and 74.12% improvement in Qn O.Moreover,the algorithmeffectively balances complexity and network performance,as demonstratedwhen reducing the number of devices in each group(Ng)from 200 to 50,resulting in a 97.21% reduction in complexity with only a 7.35% increase in energy consumption.This research offers a practical solution for optimizing IIoT networks in real-time industrial settings. 展开更多
关键词 Internet of Things edge computing OFFLOADING NOMA
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部