Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process le...Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process lead to complex surface characteristics.In this study,the structural and probabilistic characteristics of the profile grinding of a special-shaped surface were analyzed,and a probabilistic algorithm for the forming and 3D characterization of special-shaped surfaces under profile grinding was developed.The forming process of a GH738 blade tenon tooth surface was considered as an example to demonstrate the algorithm.The comparison results showed that the simulation results had similar surface characteristics to the measurement results,and the relative error range of the 3D roughness parameter was 0.21%–19.76%,indicating an accurate prediction and characterization of the complex special-shaped surface under the action of multiple factors.展开更多
The disk-pad brake used in automobile is divided i nt o two parts: the disk, geometrically axisymmetric, and the pad, of which the geo metry is three-dimensional. In the course of braking, all parameters of the pro ce...The disk-pad brake used in automobile is divided i nt o two parts: the disk, geometrically axisymmetric, and the pad, of which the geo metry is three-dimensional. In the course of braking, all parameters of the pro cesses (velocity, load, temperature, physicomechanical and tribological characte ristics of materials of the couple, and conditions of contacts) vary with the ti me. Considerable evidence has show that the contact temperature is an integral f actor reflecting the specific power friction influence at the combined effect of load, speed, friction coefficient, thermo physical and durability properties of materials of a frictional couple. Furthermore, the physic mechanical state of t he interface of the disk and pads is determined not only by the contact temperat ure but also by the nonstationary temperature field. Using the two-dimensional model for thermal analysis implies that the contact conditions and frictiona l heat flux transfer are independent of θ. This may lead to false thermal elast ic distortions and unrealistic contact conditions. An analytical model is presen ted in this paper for the determination of contact temperature distribution on t he working surface of a brake. To consider the effects of the moving heat source (the pad) with relative sliding speed variation, a transient finite element tec hnique is used to characterize the temperature fields of the solid rotor with ap propriate thermal boundary conditions. And the transient heat conduction problem can be solved as a nominal 3-D transient heat transfer problem with an immovab le heat source. Numerical results shows that the operating characteristics of th e brake exert an essentially influence on the surface temperature distribution a nd the maximal contact temperature. The temperature field presents a noaxisymmet ric characteristic (a function of θ) and proves to be strongly localized and po ssesses a sharp gradient in both axial and radial directions.展开更多
A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper a...A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers.Then the modified paper was cut according to the specific design.Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper.By simply adding phosphate buffer,the reaction was performed on the double-layer PAD.Quantitative results were obtained by analyzing the color intensity with the specialized device system(consisting of a smartphone,a detection box and sandwich plates).The 3Dprinted detection box was small,with a size of 9.0 cm×7.0 cm×11.5 cm.Color component G performed well in terms of linearity and detection limits and thus was identified as the index.The reaction conditions were optimized using a definitive screening design.Moreover,a 10%glycerol solution was found to be a suitable stabilizer.When the stabilizer was added,the activity of XOD could be maintained for at least 15 days under 4℃ or-20℃ storage conditions.The inhibitory activity of SME was investigated and compared to that of allopurinol.The results obtained with the PAD showed agreement with those obtained with the microplate method.In conclusion,the proposed PAD method is simple,accurate and has a potential for point-of-care testing.It also holds promise for use in rapid quality testing of medicinal herbs,intermediate products,and preparations of traditional Chinese medicines.展开更多
微流控芯片技术作为-项发展迅速的前沿技术,具有微型化、低耗化、便携化和集成化等特点,广泛应用于化学、生物学、医学和工程学等领域.文中结合国内外研究,介绍微流控芯片的制备材料以及以3 D 打印技术为代表的微加工技术,给出纸基微流...微流控芯片技术作为-项发展迅速的前沿技术,具有微型化、低耗化、便携化和集成化等特点,广泛应用于化学、生物学、医学和工程学等领域.文中结合国内外研究,介绍微流控芯片的制备材料以及以3 D 打印技术为代表的微加工技术,给出纸基微流控芯片( μPADs)等筒易微流控芯片在化学实验教学中的应用.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant No.51905442)the National Major Science and Technology Projects of China(Grant No.2017-VII-0002-0095).
文摘Profile grinding is the most crucial method for the ultra-precision machining of special-shaped surfaces.However,profile grinding produces a unique machining profile,and many random factors in the machining process lead to complex surface characteristics.In this study,the structural and probabilistic characteristics of the profile grinding of a special-shaped surface were analyzed,and a probabilistic algorithm for the forming and 3D characterization of special-shaped surfaces under profile grinding was developed.The forming process of a GH738 blade tenon tooth surface was considered as an example to demonstrate the algorithm.The comparison results showed that the simulation results had similar surface characteristics to the measurement results,and the relative error range of the 3D roughness parameter was 0.21%–19.76%,indicating an accurate prediction and characterization of the complex special-shaped surface under the action of multiple factors.
文摘The disk-pad brake used in automobile is divided i nt o two parts: the disk, geometrically axisymmetric, and the pad, of which the geo metry is three-dimensional. In the course of braking, all parameters of the pro cesses (velocity, load, temperature, physicomechanical and tribological characte ristics of materials of the couple, and conditions of contacts) vary with the ti me. Considerable evidence has show that the contact temperature is an integral f actor reflecting the specific power friction influence at the combined effect of load, speed, friction coefficient, thermo physical and durability properties of materials of a frictional couple. Furthermore, the physic mechanical state of t he interface of the disk and pads is determined not only by the contact temperat ure but also by the nonstationary temperature field. Using the two-dimensional model for thermal analysis implies that the contact conditions and frictiona l heat flux transfer are independent of θ. This may lead to false thermal elast ic distortions and unrealistic contact conditions. An analytical model is presen ted in this paper for the determination of contact temperature distribution on t he working surface of a brake. To consider the effects of the moving heat source (the pad) with relative sliding speed variation, a transient finite element tec hnique is used to characterize the temperature fields of the solid rotor with ap propriate thermal boundary conditions. And the transient heat conduction problem can be solved as a nominal 3-D transient heat transfer problem with an immovab le heat source. Numerical results shows that the operating characteristics of th e brake exert an essentially influence on the surface temperature distribution a nd the maximal contact temperature. The temperature field presents a noaxisymmet ric characteristic (a function of θ) and proves to be strongly localized and po ssesses a sharp gradient in both axial and radial directions.
基金The authors would like to thank the support of the National S&T Major Project of China(Grant No.:2018ZX09201011)the National Natural Science Foundation of China(Grant No.:81503242)the Fundamental Research Funds for the Central Universities(Grant No.:2018FZA7018).
文摘A novel paper-based analytical device(PAD)was prepared and applied to determine the xanthine oxidase(XOD)inhibitory activity of Salvia miltiorrhiza extracts(SME).First,polycaprolactone was 3D printed on filter paper and heated to form hydrophobic barriers.Then the modified paper was cut according to the specific design.Necessary reagents including XOD for the colorimetric assay were immobilized on two separate pieces of paper.By simply adding phosphate buffer,the reaction was performed on the double-layer PAD.Quantitative results were obtained by analyzing the color intensity with the specialized device system(consisting of a smartphone,a detection box and sandwich plates).The 3Dprinted detection box was small,with a size of 9.0 cm×7.0 cm×11.5 cm.Color component G performed well in terms of linearity and detection limits and thus was identified as the index.The reaction conditions were optimized using a definitive screening design.Moreover,a 10%glycerol solution was found to be a suitable stabilizer.When the stabilizer was added,the activity of XOD could be maintained for at least 15 days under 4℃ or-20℃ storage conditions.The inhibitory activity of SME was investigated and compared to that of allopurinol.The results obtained with the PAD showed agreement with those obtained with the microplate method.In conclusion,the proposed PAD method is simple,accurate and has a potential for point-of-care testing.It also holds promise for use in rapid quality testing of medicinal herbs,intermediate products,and preparations of traditional Chinese medicines.