Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe...Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.展开更多
A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-...A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-dependent neuroprotective protein(ADNP),has been implicated in social and cognitive protection.However,the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood.In this study,ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice.The neuropathological basis was also explored using Golgi staining,morphological analysis,western blotting,electrophysiological analysis,and behavioral analysis.Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane.In adulthood,anterior cingulate cortex(ACC)neurons exposed to sevoflurane exhibited a decrease in dendrite number,total dendrite length,and spine density.Furthermore,the expression levels of Homer,PSD95,synaptophysin,and vglut2 were significantly reduced in the sevoflurane group.Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents(mEPSCs).Notably,davunetide significantly ameliorated the synaptic defects,social behavior deficits,and cognitive impairments induced by sevoflurane.Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca^(2+)activity via the Wnt/β-catenin signaling,resulting in decreased expression of synaptic proteins.Suppression of Wnt signaling was restored in the davunetide-treated group.Thus,ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics.This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.展开更多
BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood....BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.展开更多
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten...High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.展开更多
Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of posts...Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of C...In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of Clinical Cases”that demonstrates the prevalence of behavioral disorders in preschool children.Therefore I am focused on parenting which is the most effective factor shown to affect the development and continuity of these behaviors.The management of child behavior problems is crucial.Children in early ages,especially preschoolers who are in the first 5 years of life,are influenced by dramatic changes in various aspects of development,such as social,emotional,and physical.Also,children experience many changes linked to different developmental tasks,such as discovering themselves,getting new friendships,and adapting to a new environment.In this period,parents have a critical role in supporting child development.If parents do not manage and overcome their child’s misbehavior,it could be transformed into psychosocial problems in adulthood.Parenting is the most powerful predictor in the social development of preschool children.Several studies have shown that to reduce the child’s emotional and behavioral problems,a warm relationship between parents and children is needed.In addition,recent studies have demonstrated significant relationships between family regulation factors and parenting,as well as with child behaviors.展开更多
The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an effici...The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the i...Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.展开更多
1.Background The importance of physical activity(PA)for health is unequivocal.^(1)Accordingly,population-based recommendations for exercise,and more recently public health guidelines for PA,have been developed and rel...1.Background The importance of physical activity(PA)for health is unequivocal.^(1)Accordingly,population-based recommendations for exercise,and more recently public health guidelines for PA,have been developed and released by authoritative groups for many decades.^(2)Such guidelines emerged with leadership from the exercise physiology discipline and were rooted in,and loyal to,the importance of moderate-to-vigorous intensity PA(MVPA)or exercise.展开更多
Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully a...Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casti...This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity.展开更多
Background: The use of social media platforms for health and nutrition information has become popular among college students. Although social media made information readily accessible in different formats, nutritional...Background: The use of social media platforms for health and nutrition information has become popular among college students. Although social media made information readily accessible in different formats, nutritional misinformation promoted by influencers and non-experts caused negative impact on diet behavior and perception of body image. Previous research indicated that extensive use of social media was positively linked to disordered eating behaviors. Social media platforms like Facebook and Instagram that allow users to follow celebrities intensified exposure to influencers’ messages and images and resulted in negative moods and body dissatisfaction. Objective: This paper aims to explore the impact of social media on college students’ dietary behaviors and body image. Participants: 18 undergraduate students from a public university in the Southern United States were recruited through a mass email. Methods: A cross-sectional qualitative study of three focus groups was conducted. The focus groups were based on guiding open-ended questions. Atlas.ti was used to code and analyze the data using inductive and deductive codes. Results: Three main themes were identified. The conditions theme included elements that explain why and how social media influences the participants’ actions. The actions theme included eating behavior, physical activity, and dietary supplement intake. The consequences theme describes anticipated or actual outcomes of actions such as body image and ideal weight. Conclusions: Social media has had a negative influence on diet behaviors and a positive influence on physical activity. Evidence-based nutrition and weight management information is needed to thwart potential misinformation.展开更多
Objective:To investigate the influence of xylooligosaccharides on skin inflammation,behavioral characteristics,neurotransmitters,and gut flora in a mouse model of atopic dermatitis(AD)induced by 2,4-dinitrofluorobenze...Objective:To investigate the influence of xylooligosaccharides on skin inflammation,behavioral characteristics,neurotransmitters,and gut flora in a mouse model of atopic dermatitis(AD)induced by 2,4-dinitrofluorobenzene(DNFB).Methods:The AD mouse model was created by administration of DNFB for 14 consecutive days.The scoring atopic dermatitis index,enzyme-linked immunosorbent assay(ELISA),histopathology,and immunohistochemical analyses were used to assess inflammation and depression-like behaviors.Furthermore,high-throughput 16S rRNA gene sequencing was used to determine the composition of fecal microbiota.Results:Xylooligosaccharides treatment reduced the number of scratches and skin thickness,mast cell infiltration and the levels of immunoglobulin(Ig)E and T-helper cytokines compared with the AD model group.Meanwhile,xylooligosaccharides treatment reduced the immobility time of mice in the forced swimming test and increased the total movement distance and movement distance in the center area in the open-field test.Furthermore,5-hydroxytryptamine and dopamine expression in the brain was increased following xylooligosaccharides treatment.Using network pharmacology,Gene Ontology analysis showed that the targets were mainly enriched in phosphatase binding and the regulation of leukocyte differentiation,which ameliorated AD mainly through the hypoxia inducible factor-1 and phosphatidylinositide 3-kinase-protein kinase B pathways.16S rRNA gene sequencing,diversity indices,and gut microbial taxonomic composition analysis showed DNFB-induced changes in intestinal microbiota diversity in AD mice.Comparative analysis indicated that xylooligosaccharides intake improved the gut microbiome by dramatically enhancing the concentration of Lactobacillus while decreasing the concentration of Bacteroides in mice.Conclusion:Xylooligosaccharides reduce inflammatory dermatosis and related depression-like behaviors via regulating intestinal homeostasis,having medicinal value as a nutritional and functional ingredient.展开更多
Fault zones are usually filled with fault gouge and accompanied by fault water.The coupled effect of fault gouge and water significantly impacts the slip behavior of the fault,which may weaken the fault structure and ...Fault zones are usually filled with fault gouge and accompanied by fault water.The coupled effect of fault gouge and water significantly impacts the slip behavior of the fault,which may weaken the fault structure and further induce rupture propagation and earthquakes.In this study,we carried out a laboratory experiment to investigate the fluid-induced slip behavior of fault filled with gouge.The friction evolution characteristic associated with fluid pressure and effective stress was investigated during the slip process.In addition,the role transformation process of the gouge on the slip behavior of fault was revealed.The experimental result indicates that the friction on the filled fault surface is significantly affected by fault gouge.The rupture of the gouge promotes fault slip and the fluid pressure plays a vital role in the initiation of fault slip.The fault gouge enhances the shearing strength of the fault and acts as a barrier before the initial slip under fluid injection.Nevertheless,the fault gouge would accelerate the fault slip and transform into lubricant after the initial slip.展开更多
Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Mean...Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Meanwhile,existing disease control methods often assume users’full compliance with measures like mandatory isolation,which does not align with the actual situation.To address these issues,this paper proposes a prospect theorybased framework to model users’decision-making process in epidemics and analyzes how irrationality affects individuals’behaviors and epidemic dynamics.According to the analysis results,irrationality tends to prompt conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when the risk is high.Then,this paper proposes a behavior inducement algorithm to guide individuals’behaviors and control the spread of disease.Simulations and real user tests validate our analysis,and simulation results show that the proposed behavior inducement algorithm can effectively guide individuals’behavior.展开更多
Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is ...Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.展开更多
Empathy allows humans and other animals to share the emotional state of another, adopting that individual’s perspective on a given situation. This ability is fundamental for species living in groups. Helping behavior...Empathy allows humans and other animals to share the emotional state of another, adopting that individual’s perspective on a given situation. This ability is fundamental for species living in groups. Helping behavior in laboratory animals has been used to study empathy. In this test, subjects are exposed to a conspecific that is trapped and learn to open the cage to release the other animal. However, the interpretation of helping behavior as an emphatically motivated action is still controversial. Here we review the studies that use the helping behavioral test proposed by Ben-Ami Bartal and colleagues in 2011 to better understand motivational factors for this behavior. In addition, we compare methodological aspects of these studies. In conclusion, helping behavior can be driven by empathy, but other factors such as the desire for social contact and learning components cannot be ruled out as motivators. In addition, studies focused on evaluating neurobiological mechanisms underlying helping behavior in laboratory rodents can help elucidate the factors involved in releasing the trapped co-specific.展开更多
基金supported by the following funds:National Natural Science Foundation of China(51935014,52165043)Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects(20225BCJ23008)+1 种基金Jiangxi Provincial Natural Science Foundation(20224ACB204013,20224ACB214008)Scientific Research Project of Anhui Universities(KJ2021A1106)。
文摘Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility.
基金supported by the National Natural Science Foundation of China(82171170,81971076,82371277 to H.Z.,82101345 to L.R.L.)。
文摘A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment.Davunetide,an active fragment of the activity-dependent neuroprotective protein(ADNP),has been implicated in social and cognitive protection.However,the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood.In this study,ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice.The neuropathological basis was also explored using Golgi staining,morphological analysis,western blotting,electrophysiological analysis,and behavioral analysis.Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane.In adulthood,anterior cingulate cortex(ACC)neurons exposed to sevoflurane exhibited a decrease in dendrite number,total dendrite length,and spine density.Furthermore,the expression levels of Homer,PSD95,synaptophysin,and vglut2 were significantly reduced in the sevoflurane group.Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents(mEPSCs).Notably,davunetide significantly ameliorated the synaptic defects,social behavior deficits,and cognitive impairments induced by sevoflurane.Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca^(2+)activity via the Wnt/β-catenin signaling,resulting in decreased expression of synaptic proteins.Suppression of Wnt signaling was restored in the davunetide-treated group.Thus,ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics.This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.
基金Supported by the National Natural Science Foundation of China,No.81330068.
文摘BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors.
基金supported by the National Natural Science Foundation of China(Nos.52171098 and 51921001)the State Key Laboratory for Advanced Metals and Materials(No.2022Z-02)+1 种基金the National High-level Personnel of Special Support Program(No.ZYZZ2021001)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-03C2 and FRF-BD-20-02B).
文摘High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed.
基金supported by the National Natural Science Foundation of China(82171506 and 31872778)Discipline Innovative Engineering Plan(111 Program)of China(B13036)+3 种基金Key Laboratory Grant from Hunan Province(2016TP1006)Department of Science and Technology of Hunan Province(2021DK2001,Innovative Team Program 2019RS1010)Innovation-Driven Team Project from Central South University(2020CX016)Hunan Hundred Talents Program for Young Outstanding Scientists。
文摘Proper regulation of synapse formation and elimination is critical for establishing mature neuronal circuits and maintaining brain function.Synaptic abnormalities,such as defects in the density and morphology of postsynaptic dendritic spines,underlie the pathology of various neuropsychiatric disorders.Protocadherin 17(PCDH17)is associated with major mood disorders,including bipolar disorder and depression.However,the molecular mechanisms by which PCDH17 regulates spine number,morphology,and behavior remain elusive.In this study,we found that PCDH17 functions at postsynaptic sites,restricting the number and size of dendritic spines in excitatory neurons.Selective overexpression of PCDH17 in the ventral hippocampal CA1 results in spine loss and anxiety-and depression-like behaviors in mice.Mechanistically,PCDH17 interacts with actin-relevant proteins and regulates actin filament(F-actin)organization.Specifically,PCDH17 binds to ROCK2,increasing its expression and subsequently enhancing the activity of downstream targets such as LIMK1 and the phosphorylation of cofilin serine-3(Ser3).Inhibition of ROCK2 activity with belumosudil(KD025)ameliorates the defective F-actin organization and spine structure induced by PCDH17 overexpression,suggesting that ROCK2 mediates the effects of PCDH17 on F-actin content and spine development.Hence,these findings reveal a novel mechanism by which PCDH17 regulates synapse development and behavior,providing pathological insights into the neurobiological basis of mood disorders.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金the main study who are focused on parenting style and preschoolers'behavioral problems and give an opportunity to me to comment on this issue.
文摘In this editorial,I comment on the article“Association of preschool children behavior and emotional problems with the parenting behavior of both parents”which was published in the latest issue of“World Journal of Clinical Cases”that demonstrates the prevalence of behavioral disorders in preschool children.Therefore I am focused on parenting which is the most effective factor shown to affect the development and continuity of these behaviors.The management of child behavior problems is crucial.Children in early ages,especially preschoolers who are in the first 5 years of life,are influenced by dramatic changes in various aspects of development,such as social,emotional,and physical.Also,children experience many changes linked to different developmental tasks,such as discovering themselves,getting new friendships,and adapting to a new environment.In this period,parents have a critical role in supporting child development.If parents do not manage and overcome their child’s misbehavior,it could be transformed into psychosocial problems in adulthood.Parenting is the most powerful predictor in the social development of preschool children.Several studies have shown that to reduce the child’s emotional and behavioral problems,a warm relationship between parents and children is needed.In addition,recent studies have demonstrated significant relationships between family regulation factors and parenting,as well as with child behaviors.
基金supported by the National Natural Science Foundation of China(No.92160301)the Industrial Technology Development Program,China(No.JCKY2021605 B026)。
文摘The Ti-5Al-2Sn-4Zr-4Mo-2Cr-1Fe(β-CEZ)alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance.Electrochemical machining(ECM)is an efficient and low-cost technology for manufacturing theβ-CEZ alloy.In ECM,the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials.In this study,the electrochemical dissolution behaviors of theβ-CEZ and Ti-6Al-4V(TC4)alloys in NaNO3solution are discussed.The open circuit potential(OCP),Tafel polarization,potentiodynamic polarization,electrochemical impedance spectroscopy(EIS),and current efficiency curves of theβ-CEZ and TC4 alloys are analyzed.The results show that,compared to the TC4 alloy,the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for theβ-CEZ alloy.Moreover,the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed.Under low current densities,theβ-CEZ alloy surface comprises dissolution pits and dissolved products,while the TC4 alloy surface comprises a porous honeycomb structure.Under high current densities,the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than theβ-CEZ alloy surface.Finally,the electrochemical dissolution models ofβ-CEZ and TC4 alloys are proposed.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金supported by the National Natural Science Foundation of China,No.81772421(to YH).
文摘Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity.With the increased degree and duration of distraction,spinal cord injuries become more serious in terms of their neurophysiology,histology,and behavior.Very few studies have been published on the specific characteristics of distraction spinal cord injury.In this study,we systematically review 22 related studies involving animal models of distraction spinal cord injury,focusing particularly on the neurophysiological,histological,and behavioral characteristics of this disease.In addition,we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury.We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research,and provide reference guidelines for the clinical diagnosis and treatment of this disease.
基金supported in part by an anonymous donation to develop the Precision Child and Youth Mental Health Initiative
文摘1.Background The importance of physical activity(PA)for health is unequivocal.^(1)Accordingly,population-based recommendations for exercise,and more recently public health guidelines for PA,have been developed and released by authoritative groups for many decades.^(2)Such guidelines emerged with leadership from the exercise physiology discipline and were rooted in,and loyal to,the importance of moderate-to-vigorous intensity PA(MVPA)or exercise.
基金supported by ANID Fondecyt Iniciacion 11180540(to FJB)ANID PAI 77180077(to FJB)+2 种基金UNAB DI-02-22/REG(to FJB)Exploración-ANID 13220203(to FJB)ANID-MILENIO(NCN2023_23,to FJB)。
文摘Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.U1902220,51674166,51074106 and 50674067)the National Key Research and Development Program of China(Grant No.2016YFB0301001)。
文摘This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity.
文摘Background: The use of social media platforms for health and nutrition information has become popular among college students. Although social media made information readily accessible in different formats, nutritional misinformation promoted by influencers and non-experts caused negative impact on diet behavior and perception of body image. Previous research indicated that extensive use of social media was positively linked to disordered eating behaviors. Social media platforms like Facebook and Instagram that allow users to follow celebrities intensified exposure to influencers’ messages and images and resulted in negative moods and body dissatisfaction. Objective: This paper aims to explore the impact of social media on college students’ dietary behaviors and body image. Participants: 18 undergraduate students from a public university in the Southern United States were recruited through a mass email. Methods: A cross-sectional qualitative study of three focus groups was conducted. The focus groups were based on guiding open-ended questions. Atlas.ti was used to code and analyze the data using inductive and deductive codes. Results: Three main themes were identified. The conditions theme included elements that explain why and how social media influences the participants’ actions. The actions theme included eating behavior, physical activity, and dietary supplement intake. The consequences theme describes anticipated or actual outcomes of actions such as body image and ideal weight. Conclusions: Social media has had a negative influence on diet behaviors and a positive influence on physical activity. Evidence-based nutrition and weight management information is needed to thwart potential misinformation.
文摘Objective:To investigate the influence of xylooligosaccharides on skin inflammation,behavioral characteristics,neurotransmitters,and gut flora in a mouse model of atopic dermatitis(AD)induced by 2,4-dinitrofluorobenzene(DNFB).Methods:The AD mouse model was created by administration of DNFB for 14 consecutive days.The scoring atopic dermatitis index,enzyme-linked immunosorbent assay(ELISA),histopathology,and immunohistochemical analyses were used to assess inflammation and depression-like behaviors.Furthermore,high-throughput 16S rRNA gene sequencing was used to determine the composition of fecal microbiota.Results:Xylooligosaccharides treatment reduced the number of scratches and skin thickness,mast cell infiltration and the levels of immunoglobulin(Ig)E and T-helper cytokines compared with the AD model group.Meanwhile,xylooligosaccharides treatment reduced the immobility time of mice in the forced swimming test and increased the total movement distance and movement distance in the center area in the open-field test.Furthermore,5-hydroxytryptamine and dopamine expression in the brain was increased following xylooligosaccharides treatment.Using network pharmacology,Gene Ontology analysis showed that the targets were mainly enriched in phosphatase binding and the regulation of leukocyte differentiation,which ameliorated AD mainly through the hypoxia inducible factor-1 and phosphatidylinositide 3-kinase-protein kinase B pathways.16S rRNA gene sequencing,diversity indices,and gut microbial taxonomic composition analysis showed DNFB-induced changes in intestinal microbiota diversity in AD mice.Comparative analysis indicated that xylooligosaccharides intake improved the gut microbiome by dramatically enhancing the concentration of Lactobacillus while decreasing the concentration of Bacteroides in mice.Conclusion:Xylooligosaccharides reduce inflammatory dermatosis and related depression-like behaviors via regulating intestinal homeostasis,having medicinal value as a nutritional and functional ingredient.
文摘Fault zones are usually filled with fault gouge and accompanied by fault water.The coupled effect of fault gouge and water significantly impacts the slip behavior of the fault,which may weaken the fault structure and further induce rupture propagation and earthquakes.In this study,we carried out a laboratory experiment to investigate the fluid-induced slip behavior of fault filled with gouge.The friction evolution characteristic associated with fluid pressure and effective stress was investigated during the slip process.In addition,the role transformation process of the gouge on the slip behavior of fault was revealed.The experimental result indicates that the friction on the filled fault surface is significantly affected by fault gouge.The rupture of the gouge promotes fault slip and the fluid pressure plays a vital role in the initiation of fault slip.The fault gouge enhances the shearing strength of the fault and acts as a barrier before the initial slip under fluid injection.Nevertheless,the fault gouge would accelerate the fault slip and transform into lubricant after the initial slip.
文摘Understanding and modeling individuals’behaviors during epidemics is crucial for effective epidemic control.However,existing research ignores the impact of users’irrationality on decision-making in the epidemic.Meanwhile,existing disease control methods often assume users’full compliance with measures like mandatory isolation,which does not align with the actual situation.To address these issues,this paper proposes a prospect theorybased framework to model users’decision-making process in epidemics and analyzes how irrationality affects individuals’behaviors and epidemic dynamics.According to the analysis results,irrationality tends to prompt conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when the risk is high.Then,this paper proposes a behavior inducement algorithm to guide individuals’behaviors and control the spread of disease.Simulations and real user tests validate our analysis,and simulation results show that the proposed behavior inducement algorithm can effectively guide individuals’behavior.
基金This work was supported by the National Natural Science Foundation of China(62003359).
文摘Today’s air combat has reached a high level of uncertainty where continuous or discrete variables with crisp values cannot be properly represented using fuzzy sets. With a set of membership functions, fuzzy logic is well-suited to tackle such complex states and actions. However, it is not necessary to fuzzify the variables that have definite discrete semantics.Hence, the aim of this study is to improve the level of model abstraction by proposing multiple levels of cascaded hierarchical structures from the perspective of function, namely, the functional decision tree. This method is developed to represent behavioral modeling of air combat systems, and its metamodel,execution mechanism, and code generation can provide a sound basis for function-based behavioral modeling. As a proof of concept, an air combat simulation is developed to validate this method and the results show that the fighter Alpha built using the proposed framework provides better performance than that using default scripts.
文摘Empathy allows humans and other animals to share the emotional state of another, adopting that individual’s perspective on a given situation. This ability is fundamental for species living in groups. Helping behavior in laboratory animals has been used to study empathy. In this test, subjects are exposed to a conspecific that is trapped and learn to open the cage to release the other animal. However, the interpretation of helping behavior as an emphatically motivated action is still controversial. Here we review the studies that use the helping behavioral test proposed by Ben-Ami Bartal and colleagues in 2011 to better understand motivational factors for this behavior. In addition, we compare methodological aspects of these studies. In conclusion, helping behavior can be driven by empathy, but other factors such as the desire for social contact and learning components cannot be ruled out as motivators. In addition, studies focused on evaluating neurobiological mechanisms underlying helping behavior in laboratory rodents can help elucidate the factors involved in releasing the trapped co-specific.