Greenhouse technology is an efficient and viable option, especially for the sustainable crop production in the regions of adverse climatic conditions. High summer temperature is one of the worst effects on greenhouse ...Greenhouse technology is an efficient and viable option, especially for the sustainable crop production in the regions of adverse climatic conditions. High summer temperature is one of the worst effects on greenhouse crop production throughout the year. The main purpose of this paper is to present some technologies and studies for greenhouse cooling in summer. In the paper, some applicable and practical cooling technologies have been discussed. The choice of efficient cooling method depends on many aspects, such as local climate, agronomic condition, design and covering materials. To achieve desirable benefits, the combination of different cooling methods is necessarily used. Analysis of earlier studies revealed that a naturally ventilated greenhouse with larger ventilation areas (15% - 30%), provided at the ridge and side covered with insect-proof nets of 20 - 40 mesh size with covering material properties of NIR (near infrared radiation) reflection during the day and FIR (far infrared radiation) reflection during night was suitable for greenhouse production throughout year in some special regions. Evaporation cooling is the most effective cooling method for controlling the temperature and humidity inside a greenhouse. However, its suitability is restricted to the respective region and climate when the humidity level is high. The entry of unwanted radiation or light can be controlled by the use of shading. Researches show that shade net application with different perforated mesh size and their evaluation with respect to local climate and region are necessary to get cooling benefits in summer.展开更多
Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the resul...Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.展开更多
A high-performance liquid chromatography analysis method with an evaporative light-scattering detector has been developed for the separation and quantitative analysis of free fatty acids in biological matrices. Core-s...A high-performance liquid chromatography analysis method with an evaporative light-scattering detector has been developed for the separation and quantitative analysis of free fatty acids in biological matrices. Core-shell reversed-phase high-performance liquid chromatography separation of 10 free fatty acids is achieved within 10.5 min using a methanol/water (0.05% trifluoroacetic acid) eluent gradient. After optimization, the drift tube and nebulization temperature of the evaporative light-scattering detector was set at 35°C, nitrogen flow-rate at 1.1 standard liter per minute and column temperature at 25°C. All calibration curves showed good regression (r2 > 0.9975). A validation procedure following the International Conference on Harmonisation guidelines was implemented to certify the method. Relative standard deviations did not exceed 1.5% and 4.25% for repeatability and reproducibility respectively.展开更多
文摘Greenhouse technology is an efficient and viable option, especially for the sustainable crop production in the regions of adverse climatic conditions. High summer temperature is one of the worst effects on greenhouse crop production throughout the year. The main purpose of this paper is to present some technologies and studies for greenhouse cooling in summer. In the paper, some applicable and practical cooling technologies have been discussed. The choice of efficient cooling method depends on many aspects, such as local climate, agronomic condition, design and covering materials. To achieve desirable benefits, the combination of different cooling methods is necessarily used. Analysis of earlier studies revealed that a naturally ventilated greenhouse with larger ventilation areas (15% - 30%), provided at the ridge and side covered with insect-proof nets of 20 - 40 mesh size with covering material properties of NIR (near infrared radiation) reflection during the day and FIR (far infrared radiation) reflection during night was suitable for greenhouse production throughout year in some special regions. Evaporation cooling is the most effective cooling method for controlling the temperature and humidity inside a greenhouse. However, its suitability is restricted to the respective region and climate when the humidity level is high. The entry of unwanted radiation or light can be controlled by the use of shading. Researches show that shade net application with different perforated mesh size and their evaluation with respect to local climate and region are necessary to get cooling benefits in summer.
基金This work is supported by the National Natural Science Foundation of China(No.11902232).
文摘Based on the traditional re-entrant honeycomb,a novel re-entrant octagon honeycomb(ROH)is proposed.The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation,and the results are in good agreement with the experimental ones.The deformation modes,mechanical properties,and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities.The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed.In addition,gradient design along the direction of impact can increase the initial peak stress of ROH and accelerate its densification phase.Gradient design perpendicular to the impact direction can enhance the energy absorption performance of ROH,especially for ROH,with wall thickness increasing from the inside outwards.Compared to ROH with uniform wall thickness at the same relative density,ROH with a gradient design can increase the plateau stress by over half.With the elevation of impact velocity,the plateau stress and specific energy absorption exhibit an upward trend,aligning with the dynamic performance pattern observed in conventional honeycombs.The results can be used as a reference for the design and application of honeycomb and provide a new idea for developing more efficient and reliable energy-absorbing materials.
基金financially supported by“Laval Agglomération”and the“Conseil Départemental de la Mayenne”.
文摘A high-performance liquid chromatography analysis method with an evaporative light-scattering detector has been developed for the separation and quantitative analysis of free fatty acids in biological matrices. Core-shell reversed-phase high-performance liquid chromatography separation of 10 free fatty acids is achieved within 10.5 min using a methanol/water (0.05% trifluoroacetic acid) eluent gradient. After optimization, the drift tube and nebulization temperature of the evaporative light-scattering detector was set at 35°C, nitrogen flow-rate at 1.1 standard liter per minute and column temperature at 25°C. All calibration curves showed good regression (r2 > 0.9975). A validation procedure following the International Conference on Harmonisation guidelines was implemented to certify the method. Relative standard deviations did not exceed 1.5% and 4.25% for repeatability and reproducibility respectively.