Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp...Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.展开更多
In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the ...In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
The benefits of regular physical activity are well known.Yet,few studies have examined the effectiveness of integrating physical activity(PA)into curricula within a post-secondary setting.To investigate the incorporat...The benefits of regular physical activity are well known.Yet,few studies have examined the effectiveness of integrating physical activity(PA)into curricula within a post-secondary setting.To investigate the incorporation of PA into medical curriculum,we developed a series of optional exercise-based review sessions designed to reinforce musculoskeletal(MSK)anatomy course material.These synchronous sessions were co-taught by a group fitness instructor and an anatomy instructor.The fitness instructor would lead students through both strength and yoga style exercises,while the anatomy instructor asked questions about relevant anatomical structures related to course material previously covered.After the sessions,participants were asked to evaluate the classes on their self-reported exam preparedness in improving MSK anatomy knowledge,PA levels,and mental wellbeing.Thirty participants completed surveys;a majority agreed that the classes increased understanding of MSK concepts(90.0%)and activity levels(97.7%).Many(70.0%)felt that the classes helped reduce stress.The majority of respondents(90.0%)agreed that the classes contributed to increased feelings of social connectedness.Overall,medical students saw benefit in PA based interventions to supplement MSK course concepts.Along with increasing activity levels and promoting health behaviours,integrating PA into medical curriculum may improve comprehension of learning material,alleviate stress and foster social connectivity among medical students.展开更多
The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-rel...The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.展开更多
The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started...The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”.展开更多
Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective dia...Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors(pan-NETs),emphasizing tailored approaches for specific subtypes.Cytoreductive surgery and soma...This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors(pan-NETs),emphasizing tailored approaches for specific subtypes.Cytoreductive surgery and somatostatin analogs(SSAs)play pivotal roles in managing tumors,while palliative options such as molecular targeted therapy,peptide receptor radionuclide therapy,and chemotherapy are reserved for SSA-refractory patients.Gastrinomas,insul-inomas,glucagonomas,carcinoid tumors and VIPomas necessitate distinct thera-peutic strategies.Understanding the genetic basis of pan-NETs and exploring immunotherapies could lead to promising avenues for future research.This review underscores the evolving landscape of pan-NET treatment,offering renewed hope and improved outcomes for patients facing this complex disease.展开更多
We investigated factors contributing to Internet addiction in 105 Japanese medical students. The subjects were administered by a self-reporting questionnaire designed to evaluate demographic factors, Internet addictio...We investigated factors contributing to Internet addiction in 105 Japanese medical students. The subjects were administered by a self-reporting questionnaire designed to evaluate demographic factors, Internet addiction, loneliness, health-related lifestyle factors, depressive state, patterns of behavior, and mobile phone dependence. Results of multivariate logistic regression analysis indicated that loneliness and mobile phone dependence were positively related to degree of addiction. Our findings suggest that Internet addiction is associated with loneliness and mobile phone dependence in Japanese students.展开更多
From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that ...From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that medical practitioners were influenced by this style of representation,and there are also numerous diagrams of the human body with the curved spine in the lateral-view diagrams of viscera and Ming Tang Tu(明堂图Acupuncture and Moxibustion Chart),which constantly show the human torso in an elliptical“egg shape”.No later than the Ming dynasty,medical practitioners began to depict the actual physiological spinal curve of the human body.By the Qing dynasty,the depiction of the spinal curve in medical diagrams of the human figure showed a tendency to part ways with the Taoist freehand style of the previous generation.Although the representation of the curve of the spine was very crude,later medical images of the human body at least gradually straightened the spine and no longer depicted it in a shape-shifting manner.However,the curved spine in Taoist diagrams of the human body continued to exist,and the presentation of the curved spine never changed.This way of depicting its appearance,which is very different from reality,is shaped by Taoism's special way of perceiving and viewing the body,and may also contain another form of truth.展开更多
Medical blockchain data-sharing is a technique that employs blockchain technology to facilitate the sharing of electronic medical data.The blockchain is a decentralized digital ledger that ensures data-sharing securit...Medical blockchain data-sharing is a technique that employs blockchain technology to facilitate the sharing of electronic medical data.The blockchain is a decentralized digital ledger that ensures data-sharing security,transparency,and traceability through cryptographic technology and consensus algorithms.Consequently,medical blockchain data-sharing methods have garnered significant attention and research efforts.Nevertheless,current methods have different storage and transmission measures for original data in the medical blockchain,resulting in large differences in performance and privacy.Therefore,we divide the medical blockchain data-sharing method into on-chain sharing and off-chain sharing according to the original data storage location.Among them,off-chain sharing can be subdivided into on-cloud sharing and local sharing according to whether the data is moved.Subsequently,we provide a detailed analysis of basic processes and research content for each method.Finally,we summarize the challenges posed by the current methods and discuss future research directions.展开更多
Under the background of medical disputes growing in number,scale and intensity,tracing back legal changes in medical field as a breakthrough point,this paper took a legal perspective to illustrate changes in medical d...Under the background of medical disputes growing in number,scale and intensity,tracing back legal changes in medical field as a breakthrough point,this paper took a legal perspective to illustrate changes in medical dispute settlements from legislative orientation to legal system improvement.In view of the fact that early legislation in medical field was biased towards identification and punishment of doctors’responsibility,and later intensive legislation in balancing increasing"medical trouble"phenomenon with limited effects and difficulties to abide by the law,this paper proposed to improve doctor-patient dispute settlements system in China referencing from foreign law experience,to reduce investigation of doctors at the judicial level,and to establish a settlement mechanism on doctors’apology at the legislative level,so as to promote a healthy development of doctor-patient relationship.展开更多
Objective:To provide a comprehensive review on the existing literature on medical management of urolithiasis.Methods:A thorough literature review was performed using Medline,PubMed/PMC,Embase,and the Cochrane Database...Objective:To provide a comprehensive review on the existing literature on medical management of urolithiasis.Methods:A thorough literature review was performed using Medline,PubMed/PMC,Embase,and the Cochrane Database of Systematic Reviews up to December 2022 to identify publications on the medical management of urolithiasis.Studies that assessed dietary and pharmacologic management of urolithiasis were reviewed;studies on medical expulsive therapy were not included in this review.Results:Medical management of urolithiasis ranges from the prophylactic management of kidney stone disease to dissolution therapies.While most treatment concepts have been long established,large randomized controlled trials are scarce.Dietary modification and increased fluid intake remain cornerstones in the conservative management of urolithiasis.A major limitation for medical management of urolithiasis is poor patient compliance.Conclusion:Medical management of urolithiasis is more important in patients with recurrent urolithiasis and patients with metabolic abnormalities putting them at higher risk of developing stones.Although medical management can be effective in limiting stone recurrence,medical interventions often fail due to poor compliance.展开更多
Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based di...Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.展开更多
The high rates of depression,burnout,and increased risk of suicide among medical students,residents,and physicians in comparison with other careers signal a mental health crisis within our profession.We contend that t...The high rates of depression,burnout,and increased risk of suicide among medical students,residents,and physicians in comparison with other careers signal a mental health crisis within our profession.We contend that this crisis coupled with the inadequate acquisition of interpersonal skills during medical education results from the interaction between a challenging environment and the mental capital of individuals.Additionally,we posit that mindfulness-based practices are instrumental for the development of major components of mental capital,such as resilience,flexibility of mind,and learning skills,while also serving as a pathway to enhance empathy,compassion,self-awareness,conflict resolution,and relational abilities.Importantly,the evidence base supporting the effectiveness of mindfulness-based interventions has been increasing over the years,and a growing number of medical schools have already integrated mindfulness into their curricula.While we acknowledge that mindfulness is not a panacea for all educational and mental health problems in this field,we argue that there is currently an unprecedented opportunity to gather momentum,spread and study mindfulness-based programs in medical schools around the world as a way to address some longstanding shortcomings of the medical profession and the health and educational systems upon which it is rooted.展开更多
Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laborat...Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laboratories, pharmacies, and daily medical status reports. The electronic format of medical reports ensures that all information is available in a single place. However, it is difficult to store and manage large amounts of data. Dedicated servers and a data center are needed to store and manage patient data. However, self-managed data centers are expensive for hospitals. Storing data in a cloud is a cheaper alternative. The advantage of storing data in a cloud is that it can be retrieved anywhere and anytime using any device connected to the Internet. Therefore, doctors can easily access the medical history of a patient and diagnose diseases according to the context. It also helps prescribe the correct medicine to a patient in an appropriate way. The systematic storage of medical records could help reduce medical errors in hospitals. The challenge is to store medical records on a third-party cloud server while addressing privacy and security concerns. These servers are often semi-trusted. Thus, sensitive medical information must be protected. Open access to records and modifications performed on the information in those records may even cause patient fatalities. Patient-centric health-record security is a major concern. End-to-end file encryption before outsourcing data to a third-party cloud server ensures security. This paper presents a method that is a combination of the advanced encryption standard and the elliptical curve Diffie-Hellman method designed to increase the efficiency of medical record security for users. Comparisons of existing and proposed techniques are presented at the end of the article, with a focus on the analyzing the security approaches between the elliptic curve and secret-sharing methods. This study aims to provide a high level of security for patient health records.展开更多
This editorial comments on the article by Alzerwi.We focus on the development course,present challenges,and future perspectives of medical education.Modern medical education is gradually undergoing significant and pro...This editorial comments on the article by Alzerwi.We focus on the development course,present challenges,and future perspectives of medical education.Modern medical education is gradually undergoing significant and profound changes worldwide.The emergence of new ideas,methodologies,and techniques has created opportunities for medical education developments and brought new concerns and challenges,ultimately promoting virtuous progress in medical education reform.The sustainable development of medical education needs joint efforts and support from governments,medical colleges,hospitals,researchers,administrators,and educators.展开更多
This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest cl...This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment.展开更多
基金the Deanship of Scientifc Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/421/45supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2024/R/1446)+1 种基金supported by theResearchers Supporting Project Number(UM-DSR-IG-2023-07)Almaarefa University,Riyadh,Saudi Arabia.supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2021R1F1A1055408).
文摘Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset.
文摘In this editorial,I comment on the article by Zhang et al.To emphasize the importance of the topic,I discuss the relationship between the use of smart medical devices and mental health.Smart medical services have the potential to positively influence mental health by providing monitoring,insights,and inter-ventions.However,they also come with challenges that need to be addressed.Understanding the primary purpose for which individuals use these smart tech-nologies is essential to tailoring them to specific mental health needs and prefe-rences.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘The benefits of regular physical activity are well known.Yet,few studies have examined the effectiveness of integrating physical activity(PA)into curricula within a post-secondary setting.To investigate the incorporation of PA into medical curriculum,we developed a series of optional exercise-based review sessions designed to reinforce musculoskeletal(MSK)anatomy course material.These synchronous sessions were co-taught by a group fitness instructor and an anatomy instructor.The fitness instructor would lead students through both strength and yoga style exercises,while the anatomy instructor asked questions about relevant anatomical structures related to course material previously covered.After the sessions,participants were asked to evaluate the classes on their self-reported exam preparedness in improving MSK anatomy knowledge,PA levels,and mental wellbeing.Thirty participants completed surveys;a majority agreed that the classes increased understanding of MSK concepts(90.0%)and activity levels(97.7%).Many(70.0%)felt that the classes helped reduce stress.The majority of respondents(90.0%)agreed that the classes contributed to increased feelings of social connectedness.Overall,medical students saw benefit in PA based interventions to supplement MSK course concepts.Along with increasing activity levels and promoting health behaviours,integrating PA into medical curriculum may improve comprehension of learning material,alleviate stress and foster social connectivity among medical students.
基金supported by National Natural Science Foundation of China(Grant No.62071377,62101442,62201456)Natural Science Foundation of Shaanxi Province(Grant No.2023-YBGY-036,2022JQ-687)The Graduate Student Innovation Foundation Project of Xi’an University of Posts and Telecommunications under Grant CXJJDL2022003.
文摘The Internet of Medical Things(Io MT) is regarded as a critical technology for intelligent healthcare in the foreseeable 6G era. Nevertheless, due to the limited computing power capability of edge devices and task-related coupling relationships, Io MT faces unprecedented challenges. Considering the associative connections among tasks, this paper proposes a computing offloading policy for multiple-user devices(UDs) considering device-to-device(D2D) communication and a multi-access edge computing(MEC)technique under the scenario of Io MT. Specifically,to minimize the total delay and energy consumption concerning the requirement of Io MT, we first analyze and model the detailed local execution, MEC execution, D2D execution, and associated tasks offloading exchange model. Consequently, the associated tasks’ offloading scheme of multi-UDs is formulated as a mixed-integer nonconvex optimization problem. Considering the advantages of deep reinforcement learning(DRL) in processing tasks related to coupling relationships, a Double DQN based associative tasks computing offloading(DDATO) algorithm is then proposed to obtain the optimal solution, which can make the best offloading decision under the condition that tasks of UDs are associative. Furthermore, to reduce the complexity of the DDATO algorithm, the cacheaided procedure is intentionally introduced before the data training process. This avoids redundant offloading and computing procedures concerning tasks that previously have already been cached by other UDs. In addition, we use a dynamic ε-greedy strategy in the action selection section of the algorithm, thus preventing the algorithm from falling into a locally optimal solution. Simulation results demonstrate that compared with other existing methods for associative task models concerning different structures in the Io MT network, the proposed algorithm can lower the total cost more effectively and efficiently while also providing a tradeoff between delay and energy consumption tolerance.
基金financed by the grant from the Youth Fund for Humanities and Social Sciences Research of the Ministry of Education (No. 19YJCZH040)。
文摘The pancreas is neither part of the five Zang organs(五脏) nor the six Fu organs(六腑).Thus,it has received little attention in Chinese medical literature.In the late 19th century,medical missionaries in China started translating and introducing anatomical and physiological knowledge about the pancreas.As for the word pancreas,an early and influential translation was “sweet meat”(甜肉),proposed by Benjamin Hobson(合信).The translation “sweet meat” is not faithful to the original meaning of “pancreas”,but is a term coined by Hobson based on his personal habits,and the word “sweet” appeared by chance.However,in the decades since the term “sweet meat” became popular,Chinese medicine practitioners,such as Tang Zonghai(唐宗海),reinterpreted it by drawing new medical illustrations for “sweet meat” and giving new connotations to the word “sweet”.This discussion and interpretation of “sweet meat” in modern China,particularly among Chinese medicine professionals,is not only a dissemination and interpretation of the knowledge of “pancreas”,but also a construction of knowledge around the term “sweet meat”.
文摘Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
文摘This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors(pan-NETs),emphasizing tailored approaches for specific subtypes.Cytoreductive surgery and somatostatin analogs(SSAs)play pivotal roles in managing tumors,while palliative options such as molecular targeted therapy,peptide receptor radionuclide therapy,and chemotherapy are reserved for SSA-refractory patients.Gastrinomas,insul-inomas,glucagonomas,carcinoid tumors and VIPomas necessitate distinct thera-peutic strategies.Understanding the genetic basis of pan-NETs and exploring immunotherapies could lead to promising avenues for future research.This review underscores the evolving landscape of pan-NET treatment,offering renewed hope and improved outcomes for patients facing this complex disease.
文摘We investigated factors contributing to Internet addiction in 105 Japanese medical students. The subjects were administered by a self-reporting questionnaire designed to evaluate demographic factors, Internet addiction, loneliness, health-related lifestyle factors, depressive state, patterns of behavior, and mobile phone dependence. Results of multivariate logistic regression analysis indicated that loneliness and mobile phone dependence were positively related to degree of addiction. Our findings suggest that Internet addiction is associated with loneliness and mobile phone dependence in Japanese students.
基金financed from the grant of the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ-2023001)。
文摘From the early Taoist diagrams of the human body to the end of the Qing dynasty and the beginning of the Republic of China,Taoists exaggerated and deformed the human spine in a shape-shifting manner.It is likely that medical practitioners were influenced by this style of representation,and there are also numerous diagrams of the human body with the curved spine in the lateral-view diagrams of viscera and Ming Tang Tu(明堂图Acupuncture and Moxibustion Chart),which constantly show the human torso in an elliptical“egg shape”.No later than the Ming dynasty,medical practitioners began to depict the actual physiological spinal curve of the human body.By the Qing dynasty,the depiction of the spinal curve in medical diagrams of the human figure showed a tendency to part ways with the Taoist freehand style of the previous generation.Although the representation of the curve of the spine was very crude,later medical images of the human body at least gradually straightened the spine and no longer depicted it in a shape-shifting manner.However,the curved spine in Taoist diagrams of the human body continued to exist,and the presentation of the curved spine never changed.This way of depicting its appearance,which is very different from reality,is shaped by Taoism's special way of perceiving and viewing the body,and may also contain another form of truth.
基金supported by the Guangxi Science and Technology Project(No.AB24010317).
文摘Medical blockchain data-sharing is a technique that employs blockchain technology to facilitate the sharing of electronic medical data.The blockchain is a decentralized digital ledger that ensures data-sharing security,transparency,and traceability through cryptographic technology and consensus algorithms.Consequently,medical blockchain data-sharing methods have garnered significant attention and research efforts.Nevertheless,current methods have different storage and transmission measures for original data in the medical blockchain,resulting in large differences in performance and privacy.Therefore,we divide the medical blockchain data-sharing method into on-chain sharing and off-chain sharing according to the original data storage location.Among them,off-chain sharing can be subdivided into on-cloud sharing and local sharing according to whether the data is moved.Subsequently,we provide a detailed analysis of basic processes and research content for each method.Finally,we summarize the challenges posed by the current methods and discuss future research directions.
文摘Under the background of medical disputes growing in number,scale and intensity,tracing back legal changes in medical field as a breakthrough point,this paper took a legal perspective to illustrate changes in medical dispute settlements from legislative orientation to legal system improvement.In view of the fact that early legislation in medical field was biased towards identification and punishment of doctors’responsibility,and later intensive legislation in balancing increasing"medical trouble"phenomenon with limited effects and difficulties to abide by the law,this paper proposed to improve doctor-patient dispute settlements system in China referencing from foreign law experience,to reduce investigation of doctors at the judicial level,and to establish a settlement mechanism on doctors’apology at the legislative level,so as to promote a healthy development of doctor-patient relationship.
文摘Objective:To provide a comprehensive review on the existing literature on medical management of urolithiasis.Methods:A thorough literature review was performed using Medline,PubMed/PMC,Embase,and the Cochrane Database of Systematic Reviews up to December 2022 to identify publications on the medical management of urolithiasis.Studies that assessed dietary and pharmacologic management of urolithiasis were reviewed;studies on medical expulsive therapy were not included in this review.Results:Medical management of urolithiasis ranges from the prophylactic management of kidney stone disease to dissolution therapies.While most treatment concepts have been long established,large randomized controlled trials are scarce.Dietary modification and increased fluid intake remain cornerstones in the conservative management of urolithiasis.A major limitation for medical management of urolithiasis is poor patient compliance.Conclusion:Medical management of urolithiasis is more important in patients with recurrent urolithiasis and patients with metabolic abnormalities putting them at higher risk of developing stones.Although medical management can be effective in limiting stone recurrence,medical interventions often fail due to poor compliance.
文摘Background A medical content-based image retrieval(CBIR)system is designed to retrieve images from large imaging repositories that are visually similar to a user′s query image.CBIR is widely used in evidence-based diagnosis,teaching,and research.Although the retrieval accuracy has largely improved,there has been limited development toward visualizing important image features that indicate the similarity of retrieved images.Despite the prevalence of 3D volumetric data in medical imaging such as computed tomography(CT),current CBIR systems still rely on 2D cross-sectional views for the visualization of retrieved images.Such 2D visualization requires users to browse through the image stacks to confirm the similarity of the retrieved images and often involves mental reconstruction of 3D information,including the size,shape,and spatial relations of multiple structures.This process is time-consuming and reliant on users'experience.Methods In this study,we proposed an importance-aware 3D volume visualization method.The rendering parameters were automatically optimized to maximize the visibility of important structures that were detected and prioritized in the retrieval process.We then integrated the proposed visualization into a CBIR system,thereby complementing the 2D cross-sectional views for relevance feedback and further analyses.Results Our preliminary results demonstrate that 3D visualization can provide additional information using multimodal positron emission tomography and computed tomography(PETCT)images of a non-small cell lung cancer dataset.
基金Supported by the Brazilian National Council for Scientific and Technological Development(CNPq),No.312499/2022-1São Paulo Research Foundation(FAPESP),No.2023/00823-9,and No.2023/01251-9.
文摘The high rates of depression,burnout,and increased risk of suicide among medical students,residents,and physicians in comparison with other careers signal a mental health crisis within our profession.We contend that this crisis coupled with the inadequate acquisition of interpersonal skills during medical education results from the interaction between a challenging environment and the mental capital of individuals.Additionally,we posit that mindfulness-based practices are instrumental for the development of major components of mental capital,such as resilience,flexibility of mind,and learning skills,while also serving as a pathway to enhance empathy,compassion,self-awareness,conflict resolution,and relational abilities.Importantly,the evidence base supporting the effectiveness of mindfulness-based interventions has been increasing over the years,and a growing number of medical schools have already integrated mindfulness into their curricula.While we acknowledge that mindfulness is not a panacea for all educational and mental health problems in this field,we argue that there is currently an unprecedented opportunity to gather momentum,spread and study mindfulness-based programs in medical schools around the world as a way to address some longstanding shortcomings of the medical profession and the health and educational systems upon which it is rooted.
文摘Without proper security mechanisms, medical records stored electronically can be accessed more easily than physical files. Patient health information is scattered throughout the hospital environment, including laboratories, pharmacies, and daily medical status reports. The electronic format of medical reports ensures that all information is available in a single place. However, it is difficult to store and manage large amounts of data. Dedicated servers and a data center are needed to store and manage patient data. However, self-managed data centers are expensive for hospitals. Storing data in a cloud is a cheaper alternative. The advantage of storing data in a cloud is that it can be retrieved anywhere and anytime using any device connected to the Internet. Therefore, doctors can easily access the medical history of a patient and diagnose diseases according to the context. It also helps prescribe the correct medicine to a patient in an appropriate way. The systematic storage of medical records could help reduce medical errors in hospitals. The challenge is to store medical records on a third-party cloud server while addressing privacy and security concerns. These servers are often semi-trusted. Thus, sensitive medical information must be protected. Open access to records and modifications performed on the information in those records may even cause patient fatalities. Patient-centric health-record security is a major concern. End-to-end file encryption before outsourcing data to a third-party cloud server ensures security. This paper presents a method that is a combination of the advanced encryption standard and the elliptical curve Diffie-Hellman method designed to increase the efficiency of medical record security for users. Comparisons of existing and proposed techniques are presented at the end of the article, with a focus on the analyzing the security approaches between the elliptic curve and secret-sharing methods. This study aims to provide a high level of security for patient health records.
基金Supported by Education and Teaching Reform Project of the First Clinical College of Chongqing Medical University,No.CMER202305Program for Youth Innovation in Future Medicine,Chongqing Medical University,No.W0138Natural Science Foundation of Tibet Autonomous Region,No.XZ2024ZR-ZY100(Z).
文摘This editorial comments on the article by Alzerwi.We focus on the development course,present challenges,and future perspectives of medical education.Modern medical education is gradually undergoing significant and profound changes worldwide.The emergence of new ideas,methodologies,and techniques has created opportunities for medical education developments and brought new concerns and challenges,ultimately promoting virtuous progress in medical education reform.The sustainable development of medical education needs joint efforts and support from governments,medical colleges,hospitals,researchers,administrators,and educators.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFP2021-043).
文摘This article introduces a new medical internet of things(IoT)framework for intelligent fall detection system of senior people based on our proposed deep forest model.The cascade multi-layer structure of deep forest classifier allows to generate new features at each level with minimal hyperparameters compared to deep neural networks.Moreover,the optimal number of the deep forest layers is automatically estimated based on the early stopping criteria of validation accuracy value at each generated layer.The suggested forest classifier was successfully tested and evaluated using a public SmartFall dataset,which is acquired from three-axis accelerometer in a smartwatch.It includes 92781 training samples and 91025 testing samples with two labeled classes,namely non-fall and fall.Classification results of our deep forest classifier demonstrated a superior performance with the best accuracy score of 98.0%compared to three machine learning models,i.e.,K-nearest neighbors,decision trees and traditional random forest,and two deep learning models,which are dense neural networks and convolutional neural networks.By considering security and privacy aspects in the future work,our proposed medical IoT framework for fall detection of old people is valid for real-time healthcare application deployment.