株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株...株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。展开更多
为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基...为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基于不同组合方式建立了5种LAI反演混合数据集,结合多种机器学习方法,以期构建经验与机理相结合的LAI高精度反演模型。由于LAI反演受近红外波段(near infrared,NIR)反射率影响大,该研究筛选7种与NIR波段相关的植被指数提取冬小麦光谱特征,构建与混合数据集LAI的相关系数矩阵,进一步探究不同光谱特征对冬小麦LAI的影响程度。在此基础上,采用具有代表性和普适性的4种机器学习方法,即贝叶斯岭回归模型、线性回归模型、弹性网络模型和支持向量回归模型,构建不同冬小麦LAI反演模型,用以评估基于半经验半机理数据反演冬小麦LAI的可行性,进一步探索其对不同氮素水平和复种方式的冬小麦长势评估能力。结果表明:1)筛选的与NIR波段相关的植被指数与冬小麦LAI之间存在较强的相关性,其中归一化差异植被指数、增强植被指数、归一化差异红边指数、比值植被指数、红边叶绿素植被指数、土壤调节植被指数与LAI呈正相关,结构不敏感色素植被指数与LAI呈负相关;2)辐射传输模型中体现了冬小麦LAI影响太阳光线传播的机理,结果表明,与实测数据混合建立的模型,具有较强的鲁棒性和泛化能力。相比于其他3种模型,支持向量回归模型在各种数据组合下均取得了较好的LAI预测性能,在C1、C2、C3、C4这4种训练-测试组合的训练集中R^(2)依次为0.86、0.87、0.88、0.91,RMSE依次为0.47、0.45、0.45、0.41;在测试集的R^(2)依次为0.85、0.19、0.89、0.87,RMSE依次为0.45、1.31、0.49、0.50;3)使用支持向量机生成试验区LAI反演图,对4种氮素水平和2种复种方式的冬小麦长势评估,结果表明,适当的施加氮素处理能提高冬小麦LAI值,麦-豆复种方式下的冬小麦LAI值普遍高于麦-玉复种的LAI值。该研究为冬小麦LAI的反演提供了一种有效的方法,并为高效评估冬小麦长势研究提供了参考。展开更多
本文旨在探讨以不同波段组合垂直植被指数所建立的高光谱模型对玉米叶面积指数(Leaf Area Index,LAI)的反演精度。在不同水肥耦合作用条件下,实测玉米冠层的高光谱反射率与叶面积指数数据以及裸土的高光谱反射率数据,在高光谱红光...本文旨在探讨以不同波段组合垂直植被指数所建立的高光谱模型对玉米叶面积指数(Leaf Area Index,LAI)的反演精度。在不同水肥耦合作用条件下,实测玉米冠层的高光谱反射率与叶面积指数数据以及裸土的高光谱反射率数据,在高光谱红光波段(631~760nm)与近红外波段(760~1050nm)逐波段构建土壤线,并在此基础上构建垂直植被指数(Perpendieolar Vegetation Index,PVI),找出与LAI具有最佳相关性波段组合PVI,建立玉米LAI估算模型。结果显示,采样波段间隔越窄,反演精度越高,在采样波段间隔1.4nm的PVI(R677,R918)反演2004年的玉米LAI模型中,最佳回归方程是指数函数,精度达91.1%,标准差为0.1997,RMSE=0.0399,通过了0.01极显著验证。采用高光谱数据构建的PVI植被指数对玉米LAI的估算可以取得较高的精度。展开更多
文摘株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。
文摘为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基于不同组合方式建立了5种LAI反演混合数据集,结合多种机器学习方法,以期构建经验与机理相结合的LAI高精度反演模型。由于LAI反演受近红外波段(near infrared,NIR)反射率影响大,该研究筛选7种与NIR波段相关的植被指数提取冬小麦光谱特征,构建与混合数据集LAI的相关系数矩阵,进一步探究不同光谱特征对冬小麦LAI的影响程度。在此基础上,采用具有代表性和普适性的4种机器学习方法,即贝叶斯岭回归模型、线性回归模型、弹性网络模型和支持向量回归模型,构建不同冬小麦LAI反演模型,用以评估基于半经验半机理数据反演冬小麦LAI的可行性,进一步探索其对不同氮素水平和复种方式的冬小麦长势评估能力。结果表明:1)筛选的与NIR波段相关的植被指数与冬小麦LAI之间存在较强的相关性,其中归一化差异植被指数、增强植被指数、归一化差异红边指数、比值植被指数、红边叶绿素植被指数、土壤调节植被指数与LAI呈正相关,结构不敏感色素植被指数与LAI呈负相关;2)辐射传输模型中体现了冬小麦LAI影响太阳光线传播的机理,结果表明,与实测数据混合建立的模型,具有较强的鲁棒性和泛化能力。相比于其他3种模型,支持向量回归模型在各种数据组合下均取得了较好的LAI预测性能,在C1、C2、C3、C4这4种训练-测试组合的训练集中R^(2)依次为0.86、0.87、0.88、0.91,RMSE依次为0.47、0.45、0.45、0.41;在测试集的R^(2)依次为0.85、0.19、0.89、0.87,RMSE依次为0.45、1.31、0.49、0.50;3)使用支持向量机生成试验区LAI反演图,对4种氮素水平和2种复种方式的冬小麦长势评估,结果表明,适当的施加氮素处理能提高冬小麦LAI值,麦-豆复种方式下的冬小麦LAI值普遍高于麦-玉复种的LAI值。该研究为冬小麦LAI的反演提供了一种有效的方法,并为高效评估冬小麦长势研究提供了参考。
文摘本文旨在探讨以不同波段组合垂直植被指数所建立的高光谱模型对玉米叶面积指数(Leaf Area Index,LAI)的反演精度。在不同水肥耦合作用条件下,实测玉米冠层的高光谱反射率与叶面积指数数据以及裸土的高光谱反射率数据,在高光谱红光波段(631~760nm)与近红外波段(760~1050nm)逐波段构建土壤线,并在此基础上构建垂直植被指数(Perpendieolar Vegetation Index,PVI),找出与LAI具有最佳相关性波段组合PVI,建立玉米LAI估算模型。结果显示,采样波段间隔越窄,反演精度越高,在采样波段间隔1.4nm的PVI(R677,R918)反演2004年的玉米LAI模型中,最佳回归方程是指数函数,精度达91.1%,标准差为0.1997,RMSE=0.0399,通过了0.01极显著验证。采用高光谱数据构建的PVI植被指数对玉米LAI的估算可以取得较高的精度。