As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of con...As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec...Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.展开更多
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
The prevention and early diagnosis of liver cancer remains a global medical challenge.During the malignant transformation of hepatocytes,a variety of oncogenic cellular signalling molecules,such as novel high mobility...The prevention and early diagnosis of liver cancer remains a global medical challenge.During the malignant transformation of hepatocytes,a variety of oncogenic cellular signalling molecules,such as novel high mobility group-Box 3,angiopoietin-2,Golgi protein 73,glypican-3,Wnt3a(a signalling molecule in the Wnt/β-catenin pathway),and secretory clusterin,can be expressed and secreted into the blood.These signalling molecules are derived from different signalling pathways and may not only participate in the malignant transformation of hepatocytes but also become early diagnostic indicators of hepatocarcinogenesis or specific targeted molecules for hepatocellular carcinoma therapy.This article reviews recent progress in the study of several signalling molecules as sensitive biomarkers for monitoring hepatocarcinogenesis.展开更多
The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c...The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.展开更多
Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,b...Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE.展开更多
The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valu...The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help ...Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.展开更多
Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have ...Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders(Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating(1) the broad class of chemicals termed “small molecules”;(2) adaptive immunity through both passive and active antibody treatments;(3) innate immunity with an emphasis on microglial modulation;(4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic.展开更多
Cancer is a genetic disease characterized by heritable defects in cellular regulatory mechanisms.Tumor cells must adapt their metabolism to survive and proliferate in the challenging conditions of the tumor microenvir...Cancer is a genetic disease characterized by heritable defects in cellular regulatory mechanisms.Tumor cells must adapt their metabolism to survive and proliferate in the challenging conditions of the tumor microenvironment.To maintain uncontrolled cellular growth and survival,cancer cells alter their metabolism,which makes them dependent on a steady supply of nutrients and energy.Almost a century ago,the Warburg theory suggested that cancer cells consume glucose even in the presence of oxygen.Recent studies have confirmed that cancer cells indeed consume significantly more glucose than normal cells.Cancerous tumors require an acidic microenvironment with low oxygen levels for growth and spread.However,recent advances in pH measurement have shown that the intracellular pH of cancer cells is neutral or slightly alkaline compared to normal tissue cells.This finding indicates that not all tumors are highly acidic.Taking advantage of cancer cells’high glucose consumption,a strategy to lyse cancer cells is tested by means of glucose modifications that exploit the characteristics of their uncontrolled growth process.From the study of the molecular structure to give him alkaline properties that enable him to make defects in the tumor structure and possibly achieve cell killing,this situation will have a killing effect on cancer cells if small molecules of toxic atoms(alkaline atoms)can be continuously supplied to them through food,due to the uncontrolled consumption of glucose molecules by cancer cells.This theory attempts to investigate by changing the atomic structure of glucose molecules to make them alkaline glucosodiene molecules as one of the methods to kill cancer cells.By preparing alkaline glucosodiene molecules and performing animal experiments and histological observations,it was shown that tumors without alkaline treatment showed a tendency to infiltrate and grow,while tumors treated with glucosodiene molecules showed complete disappearance of cell structure and nucleolysis,supporting the validity of the theory.展开更多
The performance and stability of perovskite solar cells(PSCs)is limited by detrimental defects,mostly distributed at the grain boundary(GB)of bulk perovskite film and interface,which induce serious carrier non-radiati...The performance and stability of perovskite solar cells(PSCs)is limited by detrimental defects,mostly distributed at the grain boundary(GB)of bulk perovskite film and interface,which induce serious carrier non-radiative recombination.Therefore,there is particularly urgent to realize simultaneous passivation of bulk defects and interfacial defects.In this work,a simple,low-cost and effective multifunctional modification strategy is developed by introducing theλ-Carrageenan(λ-C)as the interfacial layer of SnO_(2)/perovskite.The sulfate groups ofλ-C not only play a positive role in passivating the Sn4+from SnO_(2)film,resulting in high conductivity,but also effectively passivate the defects at the SnO_(2)/perovskite interface.Meanwhile,λ-C can effectively passivate the defects in the perovskite film due to the strong binding force between the high content of sulfate groups and PbI2.The synergistic effect ofλ-C simultaneously achieves interfacial defects and bulk defects passivation,better crystalline quality,suppressed charge recombination,released interfacial stress and more favorable interfacial energy level alignment.Based on the above efficient synergy,theλ-C-modified device achieves a high efficiency of 23.81%,which is~24.53%higher than the control device(19.12%).To our best knowledge,23.81%of power conversion efficiency(PCE)is the highest reported PCE value of PSCs employing green natural additives.Moreover,long-term and thermal stabilities are significantly improved after interface modification.Thus,this work provides an idea for developing multifunctional natural materials towards the attainment of the efficient and stable PSCs.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime...Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.展开更多
Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not r...Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.展开更多
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each ...The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.展开更多
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati...Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
基金financially supported by the National Natural Science Foundation of China(52203024,22225504)the Shandong Provincial Natural Science Foundation(ZR2022QE135)+2 种基金the Youth Innovation Team Project of Shandong Provincial University(2023KJ330)the Qilu University of Technology strong base plan(2023PY001)Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)。
文摘As H-and J-aggregation receive more and more attention in the research of organic solar cells(OSCs),especially in small molecular systems,deep understanding of aggregation behavior is needed to guide the design of conjugated small molecular structure and the fabrication process of OSC device.For this end,this review is written.Here,the review firstly introduced the basic information about H-and J-aggregation of conjugated small molecules in OSCs.Then,the characteristics of H-and J-aggregation and the methods to identify them were summarized.Next,it reviewed the research progress of H-and J-aggregation of conjugated small molecules in OSCs,including the factors influencing H-and J-aggregation in thin film and the effects of H-and J-aggregation on OPV performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
基金This study was supported by the National Nat-ural Science Foundation of China(No.22379105)the Natural Sci-ence Foundation of Shanxi Province(Nos.20210302123110 and 202303021211059)the Open Fund Project of Ningxia Sinostar Display Material Co.,Ltd.
文摘Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
基金Supported by National Natural Science Foundation of China,No.81673241 and No.31872738Nantong Infectious Disease Alliance Fund,No.202308001.
文摘The prevention and early diagnosis of liver cancer remains a global medical challenge.During the malignant transformation of hepatocytes,a variety of oncogenic cellular signalling molecules,such as novel high mobility group-Box 3,angiopoietin-2,Golgi protein 73,glypican-3,Wnt3a(a signalling molecule in the Wnt/β-catenin pathway),and secretory clusterin,can be expressed and secreted into the blood.These signalling molecules are derived from different signalling pathways and may not only participate in the malignant transformation of hepatocytes but also become early diagnostic indicators of hepatocarcinogenesis or specific targeted molecules for hepatocellular carcinoma therapy.This article reviews recent progress in the study of several signalling molecules as sensitive biomarkers for monitoring hepatocarcinogenesis.
基金finically supported by the National Natural Science Foundation of China(62350054,12374379,12174152,12304462)the Foundation of National Key Laboratory(***202302011)。
文摘The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs.
基金supported by the National Natural Science Foundation of China(No.U21A20331)the National Science Fund for Distinguished Young Scholars(No.21925506)+3 种基金Zhejiang Provincial Natural Science Foundation of China(No.LQ22E030013)Ningbo Key Scientific and Technological Project(2022Z117)Ningbo Public Welfare Science and Technology Planning Project(2021S149)ZBTI Scientific Research Innovation Team(KYTD202105).
文摘Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074059, 11974152, and 11404055)Heilongjiang Postdoctoral Fund (Grant No. LBH-Q21061)。
文摘The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
文摘Background:Cytotoxic T lymphocytes(CD8+T)cells function critically in mediating anti-tumor immune response in cancer patients.Characterizing the specific functions of CD8+T cells in lung adenocarcinoma(LUAD)could help better understand local anti-tumor immune responses and estimate the effect of immunotherapy.Methods:Gens related to CD8+T cells were identified by cluster analysis based on the single-cell sequencing data of three LUAD tissues and their paired normal tissues.Weighted gene co-expression network analysis(WGCNA),consensus clustering,differential expression analysis,least absolute shrinkage and selection operator(LASSO)and Cox regression analysis were conducted to classify molecular subtypes for LUAD and to develop a risk model using prognostic genes related to CD8+T cells.Expression of the genes in the prognostic model,their effects on tumor cell invasion,and interactions with CD8+T cells were verified by cell experiments.Results:This study defined two LUAD clusters(CD8+0 and CD8+1)based on CD8+T cells,with cluster CD8+0 being significantly associated with the prognosis of LUAD.Three heterogeneous subtypes(clusters 1,2,and 3)differing in prognosis,genome mutation events,and immune status were categorized using 42 prognostic genes.A prognostic model created based on 11 significant genes(including CD200R1,CLEC17A,ZC3H12D,GNG7,SNX30,CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2,and KRT81)was able to independently estimate the death risk for patients in different LUAD cohorts.Moreover,the model also showed general applicability in external validation cohorts.Low-risk patients could benefit more from taking immunotherapy and were significantly related to the resistance to anticancer drugs.The results from cell experiments demonstrated that the expression of CD200R1,CLEC17A,ZC3H12D,GNG7,and SNX30 was significantly downregulated,while that of CDCP1,NEIL3,IGF2BP1,RHOV,ABCC2 and KRT81 was upregulated in LUAD cells.Inhibition of CD200R1 greatly increased the invasiveness of the LUAD cells,but inhibiting CDCP1 expression weakened the invasion ability of LUAD cells.Conclusion:This study defined two prognostic CD8+T cell clusters and classified three heterogeneous molecular subtypes for LUAD.A prognostic model predictive of the potential effects of immunotherapy on LUAD patients was developed.
基金the MRC Laboratory of Molecular Biology (to MR)。
文摘Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders(Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating(1) the broad class of chemicals termed “small molecules”;(2) adaptive immunity through both passive and active antibody treatments;(3) innate immunity with an emphasis on microglial modulation;(4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic.
文摘Cancer is a genetic disease characterized by heritable defects in cellular regulatory mechanisms.Tumor cells must adapt their metabolism to survive and proliferate in the challenging conditions of the tumor microenvironment.To maintain uncontrolled cellular growth and survival,cancer cells alter their metabolism,which makes them dependent on a steady supply of nutrients and energy.Almost a century ago,the Warburg theory suggested that cancer cells consume glucose even in the presence of oxygen.Recent studies have confirmed that cancer cells indeed consume significantly more glucose than normal cells.Cancerous tumors require an acidic microenvironment with low oxygen levels for growth and spread.However,recent advances in pH measurement have shown that the intracellular pH of cancer cells is neutral or slightly alkaline compared to normal tissue cells.This finding indicates that not all tumors are highly acidic.Taking advantage of cancer cells’high glucose consumption,a strategy to lyse cancer cells is tested by means of glucose modifications that exploit the characteristics of their uncontrolled growth process.From the study of the molecular structure to give him alkaline properties that enable him to make defects in the tumor structure and possibly achieve cell killing,this situation will have a killing effect on cancer cells if small molecules of toxic atoms(alkaline atoms)can be continuously supplied to them through food,due to the uncontrolled consumption of glucose molecules by cancer cells.This theory attempts to investigate by changing the atomic structure of glucose molecules to make them alkaline glucosodiene molecules as one of the methods to kill cancer cells.By preparing alkaline glucosodiene molecules and performing animal experiments and histological observations,it was shown that tumors without alkaline treatment showed a tendency to infiltrate and grow,while tumors treated with glucosodiene molecules showed complete disappearance of cell structure and nucleolysis,supporting the validity of the theory.
基金supported by the National Nature Science Foundation of China(12204193,U21A2068,12104178,61935009,11974142,12174151)the Science and Technology Development Program of Jilin Province(20200401059GX,20220101008JC)。
文摘The performance and stability of perovskite solar cells(PSCs)is limited by detrimental defects,mostly distributed at the grain boundary(GB)of bulk perovskite film and interface,which induce serious carrier non-radiative recombination.Therefore,there is particularly urgent to realize simultaneous passivation of bulk defects and interfacial defects.In this work,a simple,low-cost and effective multifunctional modification strategy is developed by introducing theλ-Carrageenan(λ-C)as the interfacial layer of SnO_(2)/perovskite.The sulfate groups ofλ-C not only play a positive role in passivating the Sn4+from SnO_(2)film,resulting in high conductivity,but also effectively passivate the defects at the SnO_(2)/perovskite interface.Meanwhile,λ-C can effectively passivate the defects in the perovskite film due to the strong binding force between the high content of sulfate groups and PbI2.The synergistic effect ofλ-C simultaneously achieves interfacial defects and bulk defects passivation,better crystalline quality,suppressed charge recombination,released interfacial stress and more favorable interfacial energy level alignment.Based on the above efficient synergy,theλ-C-modified device achieves a high efficiency of 23.81%,which is~24.53%higher than the control device(19.12%).To our best knowledge,23.81%of power conversion efficiency(PCE)is the highest reported PCE value of PSCs employing green natural additives.Moreover,long-term and thermal stabilities are significantly improved after interface modification.Thus,this work provides an idea for developing multifunctional natural materials towards the attainment of the efficient and stable PSCs.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金supported by the National Natural Science Foundation of China,No.82074533(to LZ).
文摘Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic.
基金supported by NIH Core Grants P30-EY008098the Eye and Ear Foundation of Pittsburghunrestricted grants from Research to Prevent Blindness,New York,NY,USA(to KCC)。
文摘Glaucoma,characterized by a degenerative loss of retinal ganglion cells,is the second leading cause of blindness worldwide.There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury.Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases.In this review,we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture,including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes.Next,we discuss using 3D retinal organoids for retinal ganglion cell transplantation,comparing cell suspensions and clusters.This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation,with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.
文摘The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.
基金supported by the National Natural Science Foundation of China,No.82171336(to XX)。
文摘Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.