Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there...Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%.展开更多
Most of the important and powerful theorems in General Relativity such as singularity theorems and the theorems applied for null horizons depend strongly on the energy conditions. However, the energy conditions on whi...Most of the important and powerful theorems in General Relativity such as singularity theorems and the theorems applied for null horizons depend strongly on the energy conditions. However, the energy conditions on which these theorems are based on, are beginning to look at less secure if one takes into accounts quantum effects which can violate these energy conditions. Even there are classical systems that can violate these energy conditions which would be problematic in validation of those theorems. In this article, we revisit to a class of such important theorems, the laws of black hole mechanics which are meant to be developed on null like killing horizons using null energy condition. Then we show some classical and quantum mechanical systems which violate null energy condition based on which the above theorem stands.展开更多
To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signa...To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.展开更多
We construct new black-to-white hole solutions which connect the geometry of spacetime at some gluing surface inside the horizon.The continuity of the metric can be guaranteed up to the arbitrary order which is contro...We construct new black-to-white hole solutions which connect the geometry of spacetime at some gluing surface inside the horizon.The continuity of the metric can be guaranteed up to the arbitrary order which is controlled by the power factor n.This sort of black-to-white holes is characterized by the sub-Planckian scalar curvature,independent of the mass of black-to-white holes.More importantly,we show that the energy condition is only violated within a small region near the gluing surface.The geodesics of particles within the region from black hole to white hole is also analyzed.It turns out that the matter falling into the black hole may pass through the center without singularity and come out from the white hole.This scenario provides novel ideas for understanding the information loss paradox in traditional black hole physics.展开更多
The existing investigations on piezoelectric materials containing an elliptic hole or a crack mainly focus on remote uniform tensile loads.In order to have a better understanding for the fracture behavior of piezoelec...The existing investigations on piezoelectric materials containing an elliptic hole or a crack mainly focus on remote uniform tensile loads.In order to have a better understanding for the fracture behavior of piezoelectric materials under different loading conditions,theoretical and numerical solutions are presented for an elliptic hole or a crack in transversely isotropic piezoelectric materials subjected to uniform internal pressure and remote electro-mechanical loads.On the basis of the complex variable approach,analytical solutions of the elastic and electric fields inside and outside the defect are derived by satisfying permeable electric boundary condition at the surface of the elliptical hole.As an example of PZT-4 ceramics,numerical results of electro-elastic fields inside and outside the crack under various electric boundary conditions and electro-mechanical loads are given,and graphs of the electro-elastic fields in the vicinity of the crack tip are presented.The non-singular term is compared to the asymptotic one in the figures.It is shown that the dielectric constant of the air in the crack has no effect on the electric displacement component perpendicular to the crack,and the stresses in the piezoelectric material depend on the material properties and the mechanical loads on the crack surface and at infinity,but not on the electric loads at infinity.The figures obtained are strikingly similar to the available results.Unlike the existing work,the existence of electric fields inside an elliptic hole or a crack is considered,and the piezoelectric solid is subjected to complicated electro-mechanical loads.展开更多
The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materi...The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materials under different loading conditions, theoretical and numerical solutions are presented for an elliptic hole in transversely isotropic piezoelectric materials subjected to uniform internal shearing forces based on the complex potential approach. By solving ten variable linear equations, the analytical solutions inside and outside the hole satisfying the permeable electric boundary conditions are obtained. Taking PZT-4 ceramic into consideration, numerical results of electro-elastic fields along the edge of the hole and axes, and the electric displacements in the hole are presented. Comparison with stresses in transverse isotropic elastic materials shows that the hoop stress at the ends of major axis in two kinds of material equals zero for the various ratios of major to minor axis lengths; If the ratio is greater than 1, the hoop stress in piezoelectric materials is smaller than that in elastic materials, and if the ratio is smaller than 1, the hoop stress in piezoelectric materials is greater than that in elastic materials; When it is a circle hole, the shearing stress in two materials along axes is the same. The distribution of electric displacement components shows that the vertical electric displacement in the hole and along axes in the material is always zero though under the permeable electric boundary condition; The horizontal and vertical electric displacement components along the edge of the hole are symmetrical and antisymmetrical about horizontal axis, respectively. The stress and electric displacement distribution tends to zero at distances far from the elliptical hole, which conforms to the conclusion usually made on the basis of Saint-Venant’s principle. Unlike the existing work, uniform shearing forces acting on the edge of the hole, and the distribution of electro-elastic fields inside and outside the elliptic hole are considered.展开更多
Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic...Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM.展开更多
Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing ...Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing the buckling mechanism but also have prominent practical value in design and control of tubular strings. In this review, the basic principles and applicable scope of three classic research methods (the beam-column model, buck- ling differential equation, and energy method) are intro- duced. The critical buckling loads and the post-buckling behavior under different buckling modes in vertical, inclined, horizontal, and curved wellbores from different researchers are presented and compared. The current understanding of the effects of torque, boundary condi- tions, friction force, and connectors on down-hole tubular string buckling is illustrated. Meanwhile, some unsolved problems and controversial conclusions are discussed. Future research should be focused on sophisticated description of buckling behavior and the coupling effect of multiple factors. In addition, active control of down-hole tubular string buckling behavior needs some attention urgently.展开更多
As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental ...As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental results indicated.Moreover,the compressor performance,especially the efficiency,on the whole working range is improved.As shown by experiments,the stall margin and choked margin of the compressor are extended,and the maximum efficiency improvement is 14%at the large flowrate of 1.386.Numerical simulations were carried out to analyze the flow in the impeller and in the holes in the case of large flowrate.The results indicate that in large flowrate conditions,there is a low-pressure region on the throat part of the impeller passage,leading to the bypass flows appearing in the holes,which means the flow area at the inlet of the impeller is increased.The bypass flow can also contribute to the decrease of the Mach number at the throat part near the shroud end-wall which implies that the choked margin is expanded.Besides,as the bypass flow would inhibit the development of the vertexes in the tip clearance and suppress the flow recirculation in the shroud end-wall region,both the pressure ratio and efficiency of the compressor are improved,which agrees well with the experiments.展开更多
On the premise of the importance of energy conditions for regular black holes,we propose a method to remedy those models that break the dominant energy condition,e.g.,the Bardeen and Hayward black holes.We modify the ...On the premise of the importance of energy conditions for regular black holes,we propose a method to remedy those models that break the dominant energy condition,e.g.,the Bardeen and Hayward black holes.We modify the metrics but ensure their regularity at the same time,so that the weak,null,and dominant energy conditions are satisfied,with the exception of the strong energy condition.Likewise,we prove a no-go theorem for conformally related regular black holes,which states that the four energy conditions can never be met in this class of black holes.In order to seek evidences for distinguishing regular black holes from singular black holes,we resort to analogue gravity and regard it as a tool to mimic realistic regular black holes in a fluid.The equations of state for the fluid are solved via an asymptotic analysis associated with a numerical method,which provides a modus operandi for experimental observations,in particular,the conditions under which one can simulate realistic regular black holes in the fluid.展开更多
基金supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China (Grants Nos. 2016YFA0202400 and 2016YFA0202404)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee (Grant No. KQTD2015033110182370)+1 种基金the Fundamental Research (Discipline Arrangement) Project funding from Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20170412154554048)the National Natural Science Foundation of China (Grant No. 51473139)
文摘Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%.
文摘Most of the important and powerful theorems in General Relativity such as singularity theorems and the theorems applied for null horizons depend strongly on the energy conditions. However, the energy conditions on which these theorems are based on, are beginning to look at less secure if one takes into accounts quantum effects which can violate these energy conditions. Even there are classical systems that can violate these energy conditions which would be problematic in validation of those theorems. In this article, we revisit to a class of such important theorems, the laws of black hole mechanics which are meant to be developed on null like killing horizons using null energy condition. Then we show some classical and quantum mechanical systems which violate null energy condition based on which the above theorem stands.
基金Acknowledgement The authors are grateful to the financial support for this research from the National Natural Science Foundation of China (Key Program Grant No. 50936003).
文摘To overcome the shortcomings of conventional plasma arc welding ( PAW), the ' controlled pulse key-holing' strategy is proposed and the keyhole PAW experiment system is developed. 'The efflux plasma voltage signal is detected in realtime to characterize the keyhole size and dimension. The welding current waveform for controlled pulse key-holing strategy is implemented, and two slow-decreasing slopes are added at the dropping point from peak current to base current to further reduce both heat input and arc force so that the controllability of keyhole dynamics is improved. Two kinds of PAW tests are conducted, anti the different parameters of the controlled pulse current and the relevant efflux plasma voltage are measured in real-time to investigate ihe effects of welding current waveform parameters on the key-holing condition.
基金supported by the National Natural Science Foundation of China(Grant Nos.12035016,12275275,12105231,and 12275350)the Beijing Natural Science Foundation(Grant No.1222031)+2 种基金the Sichuan Science and Technology Program(Grant Nos.2024NSFSC0456,and 2023NSFSC1348)the Sichuan Youth Science and Technology Innovation Research Team(Grant No.21CXTD0038)the support from the Innovative Projects of Science and Technology(Grant No.E2545BU210)at IHEP。
文摘We construct new black-to-white hole solutions which connect the geometry of spacetime at some gluing surface inside the horizon.The continuity of the metric can be guaranteed up to the arbitrary order which is controlled by the power factor n.This sort of black-to-white holes is characterized by the sub-Planckian scalar curvature,independent of the mass of black-to-white holes.More importantly,we show that the energy condition is only violated within a small region near the gluing surface.The geodesics of particles within the region from black hole to white hole is also analyzed.It turns out that the matter falling into the black hole may pass through the center without singularity and come out from the white hole.This scenario provides novel ideas for understanding the information loss paradox in traditional black hole physics.
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. A2011210033)Foundation of Hebei Education Department of China (Grant No. ZH2011116)Hebei Provincial Research Program for Higher Education and Teaching Reformof China (Grant No. 103024)
文摘The existing investigations on piezoelectric materials containing an elliptic hole or a crack mainly focus on remote uniform tensile loads.In order to have a better understanding for the fracture behavior of piezoelectric materials under different loading conditions,theoretical and numerical solutions are presented for an elliptic hole or a crack in transversely isotropic piezoelectric materials subjected to uniform internal pressure and remote electro-mechanical loads.On the basis of the complex variable approach,analytical solutions of the elastic and electric fields inside and outside the defect are derived by satisfying permeable electric boundary condition at the surface of the elliptical hole.As an example of PZT-4 ceramics,numerical results of electro-elastic fields inside and outside the crack under various electric boundary conditions and electro-mechanical loads are given,and graphs of the electro-elastic fields in the vicinity of the crack tip are presented.The non-singular term is compared to the asymptotic one in the figures.It is shown that the dielectric constant of the air in the crack has no effect on the electric displacement component perpendicular to the crack,and the stresses in the piezoelectric material depend on the material properties and the mechanical loads on the crack surface and at infinity,but not on the electric loads at infinity.The figures obtained are strikingly similar to the available results.Unlike the existing work,the existence of electric fields inside an elliptic hole or a crack is considered,and the piezoelectric solid is subjected to complicated electro-mechanical loads.
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. A2011210033)Foundation of Hebei Provincial Education Department of China (Grant No. ZH2011116)Hebei Provincial Research Program for Higher Education and Teaching Reform of China (Grant No. 103024)
文摘The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materials under different loading conditions, theoretical and numerical solutions are presented for an elliptic hole in transversely isotropic piezoelectric materials subjected to uniform internal shearing forces based on the complex potential approach. By solving ten variable linear equations, the analytical solutions inside and outside the hole satisfying the permeable electric boundary conditions are obtained. Taking PZT-4 ceramic into consideration, numerical results of electro-elastic fields along the edge of the hole and axes, and the electric displacements in the hole are presented. Comparison with stresses in transverse isotropic elastic materials shows that the hoop stress at the ends of major axis in two kinds of material equals zero for the various ratios of major to minor axis lengths; If the ratio is greater than 1, the hoop stress in piezoelectric materials is smaller than that in elastic materials, and if the ratio is smaller than 1, the hoop stress in piezoelectric materials is greater than that in elastic materials; When it is a circle hole, the shearing stress in two materials along axes is the same. The distribution of electric displacement components shows that the vertical electric displacement in the hole and along axes in the material is always zero though under the permeable electric boundary condition; The horizontal and vertical electric displacement components along the edge of the hole are symmetrical and antisymmetrical about horizontal axis, respectively. The stress and electric displacement distribution tends to zero at distances far from the elliptical hole, which conforms to the conclusion usually made on the basis of Saint-Venant’s principle. Unlike the existing work, uniform shearing forces acting on the edge of the hole, and the distribution of electro-elastic fields inside and outside the elliptic hole are considered.
基金This project is supported by National Natural Science Foundation of China(No.50175031).
文摘Accurate boundary conditions of composite material plates with different holes are founded to settle boundary condition problems of complex holes by conformal mapping method upon the nonhomogeneous anisotropic elastic and complex function theory. And then the two stress functions required were founded on Cauchy integral by boundary conditions. The final stress distributions of opening structure and the analytical solution on composite material plate with rectangle hole and wing manholes were achieved. The influences on hole-edge stress concentration factors are discussed under different loads and fiber direction cases, and then contrast calculates are carried through FEM.
基金the financial support from the Natural Science Foundation of China (NSFC,51221003,U1262201)the Science Foundation of China University of Petroleum,Beijing (No.00000)supported by other projects (Grant Numbers:2014A-4214,2013AA064803,2011ZX05009-005)
文摘Down-hole tubular string buckling is the most classic and complex part of tubular string mechanics in well engineering. Studies of down-hole tubular string buckling not only have theoretical significance in revealing the buckling mechanism but also have prominent practical value in design and control of tubular strings. In this review, the basic principles and applicable scope of three classic research methods (the beam-column model, buck- ling differential equation, and energy method) are intro- duced. The critical buckling loads and the post-buckling behavior under different buckling modes in vertical, inclined, horizontal, and curved wellbores from different researchers are presented and compared. The current understanding of the effects of torque, boundary condi- tions, friction force, and connectors on down-hole tubular string buckling is illustrated. Meanwhile, some unsolved problems and controversial conclusions are discussed. Future research should be focused on sophisticated description of buckling behavior and the coupling effect of multiple factors. In addition, active control of down-hole tubular string buckling behavior needs some attention urgently.
基金supported by the National Natural Science Foundation of China(Grant No.50776056)the High Technology Research and Development Program of China("863"Program)(Grant No. 2009AA05Z201)
文摘As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental results indicated.Moreover,the compressor performance,especially the efficiency,on the whole working range is improved.As shown by experiments,the stall margin and choked margin of the compressor are extended,and the maximum efficiency improvement is 14%at the large flowrate of 1.386.Numerical simulations were carried out to analyze the flow in the impeller and in the holes in the case of large flowrate.The results indicate that in large flowrate conditions,there is a low-pressure region on the throat part of the impeller passage,leading to the bypass flows appearing in the holes,which means the flow area at the inlet of the impeller is increased.The bypass flow can also contribute to the decrease of the Mach number at the throat part near the shroud end-wall which implies that the choked margin is expanded.Besides,as the bypass flow would inhibit the development of the vertexes in the tip clearance and suppress the flow recirculation in the shroud end-wall region,both the pressure ratio and efficiency of the compressor are improved,which agrees well with the experiments.
基金Supported in part by the National Natural Science Foundation of China(11675081,12175108)。
文摘On the premise of the importance of energy conditions for regular black holes,we propose a method to remedy those models that break the dominant energy condition,e.g.,the Bardeen and Hayward black holes.We modify the metrics but ensure their regularity at the same time,so that the weak,null,and dominant energy conditions are satisfied,with the exception of the strong energy condition.Likewise,we prove a no-go theorem for conformally related regular black holes,which states that the four energy conditions can never be met in this class of black holes.In order to seek evidences for distinguishing regular black holes from singular black holes,we resort to analogue gravity and regard it as a tool to mimic realistic regular black holes in a fluid.The equations of state for the fluid are solved via an asymptotic analysis associated with a numerical method,which provides a modus operandi for experimental observations,in particular,the conditions under which one can simulate realistic regular black holes in the fluid.