Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
Purpose: The primary aim of this study was to develop an assessment of the fundamental, combined, and complex movement skills required to support childhood physical literacy. The secondary aim was to establish the fea...Purpose: The primary aim of this study was to develop an assessment of the fundamental, combined, and complex movement skills required to support childhood physical literacy. The secondary aim was to establish the feasibility, objectivity, and reliability evidence for the assessment.Methods: An expert advisory group recommended a course format for the assessment that would require children to complete a series of dynamic movement skills. Criterion-referenced skill performance and completion time were the recommended forms of evaluation. Children, 8–12 years of age, self-reported their age and gender and then completed the study assessments while attending local schools or day camps. Face validity was previously established through a Delphi expert(n = 19, 21% female) review process. Convergent validity was evaluated by age and gender associations with assessment performance. Inter-and intra-rater(n = 53, 34% female) objectivity and test–retest(n = 60, 47% female) reliability were assessed through repeated test administration.Results: Median total score was 21 of 28 points(range 5–28). Median completion time was 17 s. Total scores were feasible for all 995 children who self-reported age and gender. Total score did not differ between inside and outside environments(95% confidence interval(CI) of difference:-0.7 to 0.6;p = 0.91) or with/without footwear(95%CI of difference:-2.5 to 1.9; p = 0.77). Older age(p < 0.001, η2= 0.15) and male gender(p < 0.001, η2= 0.02)were associated with a higher total score. Inter-rater objectivity evidence was excellent(intraclass correlation coefficient(ICC) = 0.99) for completion time and substantial for skill score(ICC = 0.69) for 104 attempts by 53 children(34% female). Intra-rater objectivity was moderate(ICC = 0.52) for skill score and excellent for completion time(ICC = 0.99). Reliability was excellent for completion time over a short(2–4 days; ICC = 0.84) or long(8–14days; ICC = 0.82) interval. Skill score reliability was moderate(ICC = 0.46) over a short interval, and substantial(ICC = 0.74) over a long interval.Conclusion: The Canadian Agility and Movement Skill Assessment is a feasible measure of selected fundamental, complex and combined movement skills, which are an important building block for childhood physical literacy. Moderate-to-excellent objectivity was demonstrated for children 8–12 years of age. Test–retest reliability has been established over an interval of at least 1 week. The time and skill scores can be accurately estimated by 1 trained examiner.展开更多
For a physically possible deformation field of a continuum, the deformation gradient function F can be decomposed into direct sum of a symmetric tensor S and on orthogonal tensor R, which is called S-R decomposition t...For a physically possible deformation field of a continuum, the deformation gradient function F can be decomposed into direct sum of a symmetric tensor S and on orthogonal tensor R, which is called S-R decomposition theorem. In this paper, the S-R decomposition unique existence theorem is proved, by employing matrix and tensor method. Also, a brief proof of its objectivity is given.展开更多
Although objectivity is mainly accounted for in terms of linguistic thought and communication,in this article I will aim to showthat at least one condition of possibility for our understanding of objectivity is ground...Although objectivity is mainly accounted for in terms of linguistic thought and communication,in this article I will aim to showthat at least one condition of possibility for our understanding of objectivity is grounded on a prepredicative,i. e. pre-linguistic and pre-communicative,level. I will endorse a Husserlian viewpoint on the issue,and I will try to develop some aspects of the Husserlian account of three-dimensional thing-perception by means of which I will showhowprepredicative experience can actually offer us a fundamental element of our common understanding of objectivity. In doing this,it will be necessary to acknowledge thing-perception as being primarily intertwined with indeterminacy. I will claim that only on the basis of such an intuitive and prepredicative access to the things as partially indeterminate,first,and as determinable,second,is it possible to have an understanding of the world as something (at least partially) independent from the intuition (s) all subjects can have of it. By means of the addition of a consciousness of the thing as accessible to other subjects,one achieves a vision of the thing as fully determinate in itself. This"vision",however,takes one to be aware of the determination of the thing as lying beyond any intuitive grasp of it. The result will,thus,be that the prepredicative constitution of our basic sense of objectivity leads us to intend the world as something which should be accounted for (also) by means of sources different from intuition.展开更多
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman...Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.展开更多
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
This paper presents an analysis on how objectivity is discursively constructed in journalistic narratives by drawing on the theories of viewpoint and mental space in Cognitive Linguistics. It is posited that at least ...This paper presents an analysis on how objectivity is discursively constructed in journalistic narratives by drawing on the theories of viewpoint and mental space in Cognitive Linguistics. It is posited that at least three mental spaces are projected by a narrative discourse, i.e., a narrated event space, a narrating space, and a basic space, and the distance between the first two spaces determines the degree of objectivity in the narrative discourse. A schema which represents the configuration of the different spaces is proposed and applied in the analysis of journalistic narratives to explore the strategies of objectivity construction. The analysis reveals that what the different journalistic narratives have in common in the construction of objectivity is to distance the narrated event space and the narrating space with the former being foregrounded in the viewpoint arrangement.展开更多
In this paper we propose to discuss the issue of subjectivity versus objectivity teaching practice of foreign language, especially English, in Brazil. Starting from the short story "The Parrot and Descartes" by Paul...In this paper we propose to discuss the issue of subjectivity versus objectivity teaching practice of foreign language, especially English, in Brazil. Starting from the short story "The Parrot and Descartes" by Pauline Melville, we argue that Cartesianism has influenced a view on education which tends to consider good and valuable what is "scientific", "objective" and "universal". The subjective and the local seem to be considered undesirable and unreliable. Brazilian scholars on the education field, such as Coracini and Souza are important support for our argument.展开更多
China English, as one of the English varieties, is an objective reality. It is different from Chinglish which is an interlanguage for Chinese English learners. This paper expresses the definition of China English, its...China English, as one of the English varieties, is an objective reality. It is different from Chinglish which is an interlanguage for Chinese English learners. This paper expresses the definition of China English, its objectivity and manifestations in terms of pronunciation, vocabulary, syntax and text.展开更多
When scientific research began in early twentieth-century China,a key issue was the acquisition of reliable empirical information through objective and precise observations.This article examines a specific case where ...When scientific research began in early twentieth-century China,a key issue was the acquisition of reliable empirical information through objective and precise observations.This article examines a specific case where a scientist grappled with such an issue:the linguist Chao Yuen Ren’s application of mechanical means in his phonetic studies.In the 1920s–1930s,Chao conducted a series of field and lab studies on the dialects in southern and central China.In contrast to traditional scholars’exclusive reliance on sharp ears and rhyme books,Chao employed mechanical devices to inscribe and analyze the spectrographs of dialectical tones and used phonographs to record the articulations of his subjects.It is demonstrated that Chao’s machines not only provided a new method of observation;they also altered the theoretical understanding of certain fundamental categories in Chinese phonology,such as tones.Moreover,Chao did not aim to replace human perception with automatic mechanisms in empirical investigations.Rather,the use of machines in his research called for an active and engaged scientific persona.展开更多
Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occ...Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.展开更多
Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,lev...Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,leveraging deep learning methodologies.Despite garnering increasing attention in computer vision,the focus of most existing works leans toward formulating task-specific solutions rather than delving into in-depth analyses of methodological structures.As of now,there is a notable absence of a comprehensive systematic review that focuses on recently proposed deep learning-based models for these specific tasks.To fill this gap,our study presents a pioneering review that covers both themodels and the publicly available benchmark datasets,while also identifying potential directions for future research in this field.The current dataset primarily focuses on single confusing object detection at the image level,with some studies extending to video-level data.We conduct an in-depth analysis of deep learning architectures,revealing that the current state-of-the-art(SOTA)COD methods demonstrate promising performance in single object detection.We also compile and provide detailed descriptions ofwidely used datasets relevant to these detection tasks.Our endeavor extends to discussing the limitations observed in current methodologies,alongside proposed solutions aimed at enhancing detection accuracy.Additionally,we deliberate on relevant applications and outline future research trajectories,aiming to catalyze advancements in the field of glass,mirror,and camouflaged object detection.展开更多
Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects an...Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.展开更多
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ...The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.展开更多
Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have becom...Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.展开更多
The world is facing a once-in-a-lifetime situation:the COVID-19 pandemic.During the pandemic,the World Health Organization announced an infodemic as well.This infodemic caused infollution and sparked many controversie...The world is facing a once-in-a-lifetime situation:the COVID-19 pandemic.During the pandemic,the World Health Organization announced an infodemic as well.This infodemic caused infollution and sparked many controversies.Pandemics as extraordinary occurrences are always attractive to historians.However,infodemics and biased information threaten objective history-writing.Objectivity as it regards historians is already a much-discussed subject.In this commentary,the fundamental theories about objectivity are delineated.Second,the relationship between the infodemic and COVID-19 pandemic is explained.Lastly,the problems regarding objectivity in the historiography of the COVID-19 pandemic are explored.展开更多
In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,...In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.展开更多
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
基金funded by a grant from the Canadian Institutes of Health Research awarded to Dr. Meghann Lloyd and Dr. Mark Tremblay (IHD 94356)
文摘Purpose: The primary aim of this study was to develop an assessment of the fundamental, combined, and complex movement skills required to support childhood physical literacy. The secondary aim was to establish the feasibility, objectivity, and reliability evidence for the assessment.Methods: An expert advisory group recommended a course format for the assessment that would require children to complete a series of dynamic movement skills. Criterion-referenced skill performance and completion time were the recommended forms of evaluation. Children, 8–12 years of age, self-reported their age and gender and then completed the study assessments while attending local schools or day camps. Face validity was previously established through a Delphi expert(n = 19, 21% female) review process. Convergent validity was evaluated by age and gender associations with assessment performance. Inter-and intra-rater(n = 53, 34% female) objectivity and test–retest(n = 60, 47% female) reliability were assessed through repeated test administration.Results: Median total score was 21 of 28 points(range 5–28). Median completion time was 17 s. Total scores were feasible for all 995 children who self-reported age and gender. Total score did not differ between inside and outside environments(95% confidence interval(CI) of difference:-0.7 to 0.6;p = 0.91) or with/without footwear(95%CI of difference:-2.5 to 1.9; p = 0.77). Older age(p < 0.001, η2= 0.15) and male gender(p < 0.001, η2= 0.02)were associated with a higher total score. Inter-rater objectivity evidence was excellent(intraclass correlation coefficient(ICC) = 0.99) for completion time and substantial for skill score(ICC = 0.69) for 104 attempts by 53 children(34% female). Intra-rater objectivity was moderate(ICC = 0.52) for skill score and excellent for completion time(ICC = 0.99). Reliability was excellent for completion time over a short(2–4 days; ICC = 0.84) or long(8–14days; ICC = 0.82) interval. Skill score reliability was moderate(ICC = 0.46) over a short interval, and substantial(ICC = 0.74) over a long interval.Conclusion: The Canadian Agility and Movement Skill Assessment is a feasible measure of selected fundamental, complex and combined movement skills, which are an important building block for childhood physical literacy. Moderate-to-excellent objectivity was demonstrated for children 8–12 years of age. Test–retest reliability has been established over an interval of at least 1 week. The time and skill scores can be accurately estimated by 1 trained examiner.
文摘For a physically possible deformation field of a continuum, the deformation gradient function F can be decomposed into direct sum of a symmetric tensor S and on orthogonal tensor R, which is called S-R decomposition theorem. In this paper, the S-R decomposition unique existence theorem is proved, by employing matrix and tensor method. Also, a brief proof of its objectivity is given.
文摘Although objectivity is mainly accounted for in terms of linguistic thought and communication,in this article I will aim to showthat at least one condition of possibility for our understanding of objectivity is grounded on a prepredicative,i. e. pre-linguistic and pre-communicative,level. I will endorse a Husserlian viewpoint on the issue,and I will try to develop some aspects of the Husserlian account of three-dimensional thing-perception by means of which I will showhowprepredicative experience can actually offer us a fundamental element of our common understanding of objectivity. In doing this,it will be necessary to acknowledge thing-perception as being primarily intertwined with indeterminacy. I will claim that only on the basis of such an intuitive and prepredicative access to the things as partially indeterminate,first,and as determinable,second,is it possible to have an understanding of the world as something (at least partially) independent from the intuition (s) all subjects can have of it. By means of the addition of a consciousness of the thing as accessible to other subjects,one achieves a vision of the thing as fully determinate in itself. This"vision",however,takes one to be aware of the determination of the thing as lying beyond any intuitive grasp of it. The result will,thus,be that the prepredicative constitution of our basic sense of objectivity leads us to intend the world as something which should be accounted for (also) by means of sources different from intuition.
基金This research was funded by the Natural Science Foundation of Hebei Province(F2021506004).
文摘Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
文摘This paper presents an analysis on how objectivity is discursively constructed in journalistic narratives by drawing on the theories of viewpoint and mental space in Cognitive Linguistics. It is posited that at least three mental spaces are projected by a narrative discourse, i.e., a narrated event space, a narrating space, and a basic space, and the distance between the first two spaces determines the degree of objectivity in the narrative discourse. A schema which represents the configuration of the different spaces is proposed and applied in the analysis of journalistic narratives to explore the strategies of objectivity construction. The analysis reveals that what the different journalistic narratives have in common in the construction of objectivity is to distance the narrated event space and the narrating space with the former being foregrounded in the viewpoint arrangement.
文摘In this paper we propose to discuss the issue of subjectivity versus objectivity teaching practice of foreign language, especially English, in Brazil. Starting from the short story "The Parrot and Descartes" by Pauline Melville, we argue that Cartesianism has influenced a view on education which tends to consider good and valuable what is "scientific", "objective" and "universal". The subjective and the local seem to be considered undesirable and unreliable. Brazilian scholars on the education field, such as Coracini and Souza are important support for our argument.
文摘China English, as one of the English varieties, is an objective reality. It is different from Chinglish which is an interlanguage for Chinese English learners. This paper expresses the definition of China English, its objectivity and manifestations in terms of pronunciation, vocabulary, syntax and text.
文摘When scientific research began in early twentieth-century China,a key issue was the acquisition of reliable empirical information through objective and precise observations.This article examines a specific case where a scientist grappled with such an issue:the linguist Chao Yuen Ren’s application of mechanical means in his phonetic studies.In the 1920s–1930s,Chao conducted a series of field and lab studies on the dialects in southern and central China.In contrast to traditional scholars’exclusive reliance on sharp ears and rhyme books,Chao employed mechanical devices to inscribe and analyze the spectrographs of dialectical tones and used phonographs to record the articulations of his subjects.It is demonstrated that Chao’s machines not only provided a new method of observation;they also altered the theoretical understanding of certain fundamental categories in Chinese phonology,such as tones.Moreover,Chao did not aim to replace human perception with automatic mechanisms in empirical investigations.Rather,the use of machines in his research called for an active and engaged scientific persona.
基金a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT)Republic of Korea.This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding program Grant Code(NU/RG/SERC/12/6).
文摘Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.
基金supported by the NationalNatural Science Foundation of China Nos.62302167,U23A20343Shanghai Sailing Program(23YF1410500)Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23CGA34).
文摘Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,leveraging deep learning methodologies.Despite garnering increasing attention in computer vision,the focus of most existing works leans toward formulating task-specific solutions rather than delving into in-depth analyses of methodological structures.As of now,there is a notable absence of a comprehensive systematic review that focuses on recently proposed deep learning-based models for these specific tasks.To fill this gap,our study presents a pioneering review that covers both themodels and the publicly available benchmark datasets,while also identifying potential directions for future research in this field.The current dataset primarily focuses on single confusing object detection at the image level,with some studies extending to video-level data.We conduct an in-depth analysis of deep learning architectures,revealing that the current state-of-the-art(SOTA)COD methods demonstrate promising performance in single object detection.We also compile and provide detailed descriptions ofwidely used datasets relevant to these detection tasks.Our endeavor extends to discussing the limitations observed in current methodologies,alongside proposed solutions aimed at enhancing detection accuracy.Additionally,we deliberate on relevant applications and outline future research trajectories,aiming to catalyze advancements in the field of glass,mirror,and camouflaged object detection.
文摘Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
基金supported by a grant from the National Key Research and Development Project(2023YFB4302100)Key Research and Development Project of Jiangxi Province(No.20232ACE01011)Independent Deployment Project of Ganjiang Innovation Research Institute,Chinese Academy of Sciences(E255J001).
文摘Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
文摘The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.
基金supported by the National Natural Science Foundation of China under Grant 62177029the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0740),China.
文摘Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.
文摘The world is facing a once-in-a-lifetime situation:the COVID-19 pandemic.During the pandemic,the World Health Organization announced an infodemic as well.This infodemic caused infollution and sparked many controversies.Pandemics as extraordinary occurrences are always attractive to historians.However,infodemics and biased information threaten objective history-writing.Objectivity as it regards historians is already a much-discussed subject.In this commentary,the fundamental theories about objectivity are delineated.Second,the relationship between the infodemic and COVID-19 pandemic is explained.Lastly,the problems regarding objectivity in the historiography of the COVID-19 pandemic are explored.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.61906168,U20A20171)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY23F020023,LY21F020027)Construction of Hubei Provincial Key Laboratory for Intelligent Visual Monitoring of Hydropower Projects(Grant Nos.2022SDSJ01).
文摘In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.