BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality,with the liver being the primary organ of metastasis.Preoperative chemotherapy is widely recomm...BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality,with the liver being the primary organ of metastasis.Preoperative chemotherapy is widely recommended for initially or potentially resectable colorectal liver metastases(CRLMs).Tumour pathological response serves as the most important and intuitive indicator for assessing the efficacy of chemotherapy.However,the postoperative pathological results reveal that a considerable number of patients exhibit a poor response to preoperative chemotherapy.Body mass index(BMI)is one of the factors affecting the tumori-genesis and progression of colorectal cancer as well as prognosis after various antitumour therapies.Several studies have indicated that overweight and obese patients with metastatic colorectal cancer experience worse prognoses than those with normal weight,particularly when receiving first-line chemotherapy regimens in combination with bevacizumab.AIM To explore the predictive value of BMI regarding the pathologic response following preoperative chemotherapy for CRLMs.METHODS A retrospective analysis was performed in 126 consecutive patients with CRLM who underwent hepatectomy following preoperative chemotherapy at four different hospitals from October 2019 to July 2023.Univariate and multivariate logistic regression models were applied to analyse potential predictors of tumour pathological response.The Kaplan-Meier method with log rank test was used to compare progression-free survival(PFS)between patients with high and low BMI.BMI<24.0 kg/m^(2) was defined as low BMI,and tumour regression grade 1-2 was defined as complete tumour response.RESULTS Low BMI was observed in 74(58.7%)patients and complete tumour response was found in 27(21.4%)patients.The rate of complete tumour response was significantly higher in patients with low BMI(29.7%vs 9.6%,P=0.007).Multivariate analysis revealed that low BMI[odds ratio(OR)=4.56,95%confidence interval(CI):1.42-14.63,P=0.011],targeted therapy with bevacizumab(OR=3.02,95%CI:1.10-8.33,P=0.033),preoperative carcinoembryonic antigen level<10 ng/mL(OR=3.84,95%CI:1.19-12.44,P=0.025)and severe sinusoidal dilatation(OR=0.17,95%CI:0.03-0.90,P=0.037)were independent predictive factors for complete tumour response.The low BMI group exhibited a significantly longer median PFS than the high BMI group(10.7 mo vs 4.7 mo,P=0.011).CONCLUSION In CRLM patients receiving preoperative chemotherapy,a low BMI may be associated with better tumour response and longer PFS.展开更多
Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing w...Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing which has inflatable nylon cells.The modern wingsuits were developed in the 1990's.They are sometimes referred to as birdman suits or flying squirrel suits.展开更多
Cerebral palsy is a multiple disability manifested by motor deficits and impairments of cognition, language, and body perception. To assess if body schema and body image distortion in children and youth with cerebral ...Cerebral palsy is a multiple disability manifested by motor deficits and impairments of cognition, language, and body perception. To assess if body schema and body image distortion in children and youth with cerebral palsy can be represented through draw-a-person-test, outcome measure of conscious and subconscious body awareness, visual perception and cognition in two age-matched groups, one with cerebral palsy and other with developmental disability, were collected. The outcome was compared within the two groups and with reference data (healthy population) and correlated with the outcome of draw-a-person test. Decreased scores in the draw-a-person test in subjects with cerebral palsy compared both to subjects with developmental disorders and to healthy population had strongly correlated with decreased scores in visual perception. This suggests that draw-a-person test may provide a preliminary guidance for the assessment of visual perception. No statistically significant effect of cognitive abilities on performance in the draw-a-person test was found. The influence of both conscious and subconscious body awareness on the scores in the draw-a-person test was not significant, which confirms that this test alone is not fully reliable to detect the body schema and body image disorder in cerebral palsy.展开更多
BACKGROUND The root of mesentery dissection is one of the critical maneuvers,especially in borderline resectable pancreatic head cancer.Intra-abdominal chyle leak(CL)including chylous ascites may ensue in up to 10%of ...BACKGROUND The root of mesentery dissection is one of the critical maneuvers,especially in borderline resectable pancreatic head cancer.Intra-abdominal chyle leak(CL)including chylous ascites may ensue in up to 10%of patients after pancreatic resections.Globally recognized superior mesenteric artery(SMA)first approaches are invariably performed.The mesenteric dissection through the inferior infracolic approach has been discussed in this study emphasizing its post-operative impact on CL which is the cornerstone of this study.AIM To assess incidence,risk factors,clinical impact of CL following root of mesentery dissection,and the different treatment modalities.METHODS This is a retrospective study incorporating the patients who underwent dissection of the root of mesentery with inferior infracolic SMA first approach pancreat-oduodenectomy for the ventral body and uncinate mass of pancreas in the Department of Gastrointestinal and General Surgery of Kathmandu Medical College and Teaching Hospital from January 1,2021 to February 28,2024.Intraop-erative findings and postoperative outcomes were analyzed.RESULTS In three years,ten patients underwent root of mesentery dissection with inferior infracolic SMA first approach pancreatoduodenectomy.The mean age was 67.6 years with a male-to-female ratio of 4:5.CL was seen in four patients.With virtue of CL,Clavien-Dindo grade Ⅱ or higher morbidity was observed in four patients.Two patients had a hospital stay of more than 20 days with the former having a delayed gastric emptying and the latter with long-term total parenteral nutrition requirement.The mean operative time was 330 minutes.Curative resection was achieved in 100%of the patients.The mean duration of the intensive care unit and hospital stay were 2.55±1.45 days and 15.7±5.32 days,respectively.CONCLUSION Root of mesentery dissection with lymphadenectomy and vascular resection correlated with occurrence of CL.After complete curative resection,these were managed with total parenteral nutrition without adversely impacting outcome.展开更多
To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. ...To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.展开更多
Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics mo...Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.展开更多
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grid...The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.展开更多
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ...The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.展开更多
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit...In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.展开更多
We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing mode...We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.展开更多
Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regi...Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.展开更多
Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some excep...Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.展开更多
In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the meas...In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the measured data, high-speed video techniques. inertia force acting on the insect was computed and aerodynamic force and moment of the wings were calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. The following has been shown. In its voluntary takeoff, a fruitfly jumps during the first wingbeat and becomes airborne at the end of the first wingbeat. When it is in the air, the fly has a relatively large "initial" pitch-up rotational velocity (more than 5 000~/s) resulting from the jumping, but in about 5 wingbeats, the pitch-up rotation is stopped and the fly goes into a quasi-hovering flight. The fly mainly uses the force of jumping legs to lift itself into the air (the force from the flapping wings during the jumping is only about 5%-10% of the leg force). The main role played by the flapping wings in the takeoff is to produce a pitch-down moment to nullify the large "initial" pitch-up rotational velocity (otherwise, the fly would have kept pitching-up and quickly fallen down).展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic sh...Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.展开更多
基金National Natural Science Foundation of China,No.82170618.
文摘BACKGROUND Colorectal cancer is the third most prevalent malignancy globally and ranks second in cancer-related mortality,with the liver being the primary organ of metastasis.Preoperative chemotherapy is widely recommended for initially or potentially resectable colorectal liver metastases(CRLMs).Tumour pathological response serves as the most important and intuitive indicator for assessing the efficacy of chemotherapy.However,the postoperative pathological results reveal that a considerable number of patients exhibit a poor response to preoperative chemotherapy.Body mass index(BMI)is one of the factors affecting the tumori-genesis and progression of colorectal cancer as well as prognosis after various antitumour therapies.Several studies have indicated that overweight and obese patients with metastatic colorectal cancer experience worse prognoses than those with normal weight,particularly when receiving first-line chemotherapy regimens in combination with bevacizumab.AIM To explore the predictive value of BMI regarding the pathologic response following preoperative chemotherapy for CRLMs.METHODS A retrospective analysis was performed in 126 consecutive patients with CRLM who underwent hepatectomy following preoperative chemotherapy at four different hospitals from October 2019 to July 2023.Univariate and multivariate logistic regression models were applied to analyse potential predictors of tumour pathological response.The Kaplan-Meier method with log rank test was used to compare progression-free survival(PFS)between patients with high and low BMI.BMI<24.0 kg/m^(2) was defined as low BMI,and tumour regression grade 1-2 was defined as complete tumour response.RESULTS Low BMI was observed in 74(58.7%)patients and complete tumour response was found in 27(21.4%)patients.The rate of complete tumour response was significantly higher in patients with low BMI(29.7%vs 9.6%,P=0.007).Multivariate analysis revealed that low BMI[odds ratio(OR)=4.56,95%confidence interval(CI):1.42-14.63,P=0.011],targeted therapy with bevacizumab(OR=3.02,95%CI:1.10-8.33,P=0.033),preoperative carcinoembryonic antigen level<10 ng/mL(OR=3.84,95%CI:1.19-12.44,P=0.025)and severe sinusoidal dilatation(OR=0.17,95%CI:0.03-0.90,P=0.037)were independent predictive factors for complete tumour response.The low BMI group exhibited a significantly longer median PFS than the high BMI group(10.7 mo vs 4.7 mo,P=0.011).CONCLUSION In CRLM patients receiving preoperative chemotherapy,a low BMI may be associated with better tumour response and longer PFS.
文摘Wingsuit Flying,alsocalled wingsuiting,is a variation of skydiving.In this sport,a person will fly in the air using a special jumpsuit called a wingsuit.This wingsuit comprises of two arm wings and a single leg wing which has inflatable nylon cells.The modern wingsuits were developed in the 1990's.They are sometimes referred to as birdman suits or flying squirrel suits.
文摘Cerebral palsy is a multiple disability manifested by motor deficits and impairments of cognition, language, and body perception. To assess if body schema and body image distortion in children and youth with cerebral palsy can be represented through draw-a-person-test, outcome measure of conscious and subconscious body awareness, visual perception and cognition in two age-matched groups, one with cerebral palsy and other with developmental disability, were collected. The outcome was compared within the two groups and with reference data (healthy population) and correlated with the outcome of draw-a-person test. Decreased scores in the draw-a-person test in subjects with cerebral palsy compared both to subjects with developmental disorders and to healthy population had strongly correlated with decreased scores in visual perception. This suggests that draw-a-person test may provide a preliminary guidance for the assessment of visual perception. No statistically significant effect of cognitive abilities on performance in the draw-a-person test was found. The influence of both conscious and subconscious body awareness on the scores in the draw-a-person test was not significant, which confirms that this test alone is not fully reliable to detect the body schema and body image disorder in cerebral palsy.
文摘BACKGROUND The root of mesentery dissection is one of the critical maneuvers,especially in borderline resectable pancreatic head cancer.Intra-abdominal chyle leak(CL)including chylous ascites may ensue in up to 10%of patients after pancreatic resections.Globally recognized superior mesenteric artery(SMA)first approaches are invariably performed.The mesenteric dissection through the inferior infracolic approach has been discussed in this study emphasizing its post-operative impact on CL which is the cornerstone of this study.AIM To assess incidence,risk factors,clinical impact of CL following root of mesentery dissection,and the different treatment modalities.METHODS This is a retrospective study incorporating the patients who underwent dissection of the root of mesentery with inferior infracolic SMA first approach pancreat-oduodenectomy for the ventral body and uncinate mass of pancreas in the Department of Gastrointestinal and General Surgery of Kathmandu Medical College and Teaching Hospital from January 1,2021 to February 28,2024.Intraop-erative findings and postoperative outcomes were analyzed.RESULTS In three years,ten patients underwent root of mesentery dissection with inferior infracolic SMA first approach pancreatoduodenectomy.The mean age was 67.6 years with a male-to-female ratio of 4:5.CL was seen in four patients.With virtue of CL,Clavien-Dindo grade Ⅱ or higher morbidity was observed in four patients.Two patients had a hospital stay of more than 20 days with the former having a delayed gastric emptying and the latter with long-term total parenteral nutrition requirement.The mean operative time was 330 minutes.Curative resection was achieved in 100%of the patients.The mean duration of the intensive care unit and hospital stay were 2.55±1.45 days and 15.7±5.32 days,respectively.CONCLUSION Root of mesentery dissection with lymphadenectomy and vascular resection correlated with occurrence of CL.After complete curative resection,these were managed with total parenteral nutrition without adversely impacting outcome.
文摘To compute transonic flows over a complex 3D aircraft configuration, a viscous/inviscid interaction method is developed by coupling an integral boundary-layer solver with an Eluer solver in a "semi-inverse" manner. For the turbulent boundary-layer, an integral method using Green's lag equation is coupled with the outer inviscid flow. A blowing velocity approach is used to simulate the displacement effects of the boundary layer. To predict the aerodynamic drag, it is developed a numerical technique called far-field method that is based on the momentum theorem, in which the total drag is divided into three component drags, i.e. viscous, induced and wave-formed. Consequently, it can provide more physical insight into the drag sources than the often-used surface integral technique. The drag decomposition can be achieved with help of the second law of thermodynamics, which implies that entropy increases and total pressure decreases only across shock wave along a streamline of an inviscid non-isentropic flow. This method has been applied to the DLR-F4 wing/body configuration showing results in good agreement with the wind tunnel data.
文摘Synthetic analysis is conducted to the wind tunnel experiment results of zero lift drag coefficient and lift coefficient for large aspect ratio winged rigid body.By means of wind tunnel experiment data,the dynamics model of the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body is amended.The research indicates that the change trends of zero lift drag coefficient and lift coefficient to Mach number are similar.The calculation result and wind tunnel experiment data all verify the validity of the amended dynamics model by which to estimate the zero lift drag coefficient and lift coefficient for the large aspect ratio winged rigid body,and thus providing some technical reference to aerodynamics character analysis of the same types of winged rigid body.
基金supported by the National Natural Science Foundation of China(10732030)the 111 Project (B 07009)
文摘The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)Ph.D.Student Foundation of Chinese Ministry of Education(20030006022)
文摘The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.
文摘In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.
基金Acknowledgement This research was supported by the National Natural Science Foundation of China (Grant No. 10732030) and the 111 Project (B07009).
文摘We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.
基金a Multidisciplinary University Research Initiative (MURI) project sponsored by AFOSR
文摘Micro air vehicles (MAV's) have the potential to revolutionize our sensing and information gathering capabilities in environmental monitoring and homeland security areas. Due to the MAV's' small size, flight regime, and modes of operation, significant scientific advancement will be needed to create this revolutionary capability. Aerodynamics, structural dynamics, and flight dynamics of natural flyers intersects with some of the richest problems in MAV's, inclu- ding massively unsteady three-dimensional separation, transition in boundary layers and shear layers, vortical flows and bluff body flows, unsteady flight environment, aeroelasticity, and nonlinear and adaptive control are just a few examples. A challenge is that the scaling of both fluid dynamics and structural dynamics between smaller natural flyer and practical flying hardware/lab experiment (larger dimension) is fundamentally difficult. In this paper, we offer an overview of the challenges and issues, along with sample results illustrating some of the efforts made from a computational modeling angle.
基金supported by grants from the National Natural Science Foundation of China (NSFC, 31330073, 31672292)the Natural Science Foundation of the Department of Education, Hebei Province (YQ2014024)
文摘Background: Geographic variation in body size is assumed to reflect adaptation to local environmental conditions. Although Bergmann's rule is usually sufficient to explain such variation in homeotherms, some exceptions have been documented. The relationship between altitude, latitude and body size, has been well documented for some vertebrate taxa during the past decades. However, relatively little information is available on the effects of climate variables on body size in birds.Methods: We collected the data of 267 adult Eurasian Tree Sparrow(Passer montanus) specimens sampled at 48 localities in China's mainland, and further investigated the relationships between two response variables, body mass and wing length, as well as a suit of explanatory variables, i.e. altitude, latitude, mean annual temperature(MAT), annual precipitation(PRC), annual sunshine hours(SUN), average annual wind speed(WS), air pressure(AP) and relative humidity(RH).Results: Our study showed that(1) although the sexes did not differ significantly in body mass, males had longer wings than females;(2) body mass and wing length were positively correlated with altitude but not with latitude;(3) body mass and wing length were negatively correlated with AP and RH, but not significantly correlated with WS. Body mass was positively correlated with SUN and inversely correlated with MAT. Wing length was not correlated with MAT in either sex, but was positively correlated with SUN and negatively correlated with PRC in male sparrows;(4) variation in body mass could be best explained by AP and SUN, whereas variation in wing length could be explained by RH and AP in both sexes. In addition, variation in male sparrows can be explained by SUN, WS and PRC but not in females.Conclusions: Two different proxies of body size, body mass and wing length, correlated with same geographic factors and different climate factors. These differences may reflect selection for heat conservation in the case of body mass, and for efficient flight in the case of wing length.
基金supported by the National Natural Science Foundation of China(11232002)the 111 Project(B07009)
文摘In the paper, we present a detailed analysis of the takeoff mechanics of fruitflies which perform voluntary takeoff flights. Wing and body kinematics of the insects during takeoff were measured using Based on the measured data, high-speed video techniques. inertia force acting on the insect was computed and aerodynamic force and moment of the wings were calculated by the method of computational fluid dynamics. Subtracting the aerodynamic force and the weight from the inertia force gave the leg force. The following has been shown. In its voluntary takeoff, a fruitfly jumps during the first wingbeat and becomes airborne at the end of the first wingbeat. When it is in the air, the fly has a relatively large "initial" pitch-up rotational velocity (more than 5 000~/s) resulting from the jumping, but in about 5 wingbeats, the pitch-up rotation is stopped and the fly goes into a quasi-hovering flight. The fly mainly uses the force of jumping legs to lift itself into the air (the force from the flapping wings during the jumping is only about 5%-10% of the leg force). The main role played by the flapping wings in the takeoff is to produce a pitch-down moment to nullify the large "initial" pitch-up rotational velocity (otherwise, the fly would have kept pitching-up and quickly fallen down).
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
文摘Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles.