期刊文献+
共找到3,105篇文章
< 1 2 156 >
每页显示 20 50 100
Physiology of medicinal and aromatic plants under drought stress
1
作者 Zohreh Emami Bistgani Allen V.Barker Masoud Hashemi 《The Crop Journal》 SCIE CSCD 2024年第2期330-339,共10页
Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspect... Drought poses a significant challenge,restricting the productivity of medicinal and aromatic plants.The strain induced by drought can impede vital processes like respiration and photosynthesis,affecting various aspects of plants’growth and metabolism.In response to this adversity,medicinal plants employ mechanisms such as morphological and structural adjustments,modulation of drought-resistant genes,and augmented synthesis of secondary metabolites and osmotic regulatory substances to alleviate the stress.Extreme water scarcity can lead to leaf wilting and may ultimately result in plant death.The cultivation and management of medicinal plants under stress conditions often differ from those of other crops.This is because the main goal with medicinal plants is not only to increase the yield of the above-ground parts but also to enhance the production of active ingredients such as essential oils.To elucidate these mechanisms of drought resistance in medicinal and aromatic plants,the current review provides a summary of recent literature encompassing studies on the morphology,physiology,and biochemistry of medicinal and aromatic plants under drought conditions. 展开更多
关键词 Drought stress Medicinal and aromatic plants PHYTOCHEMISTRY physiology
下载PDF
Plant growth and metabolism of exotic and native Crotalaria species for mine land rehabilitation in the Amazon
2
作者 Hemelyn Soares das Chagas Rafael Silva Guedes +6 位作者 Markus Gastauer Paula Godinho Ribeiro Allan Klynger da Silva Lobato Cecílio Frois Caldeira Fabrício William deÁvila AndréRodrigues dos Reis Silvio Junio Ramos 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期143-154,共12页
Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the estab... Despite its enormous benefits,mining is respon-sible for intense changes to vegetation and soil properties.Thus,after extraction,it is necessary to rehabilitate the mined areas,creating better conditions for the establishment of plant species which is challenging.This study evaluated mineral and organic fertilization on the growth,and carbon and nitrogen(N)metabolism of two Crotalaria species[Cro-talaria spectabilis(exotic species)and Crotalaria maypu-rensis(native species from Carajás Mineral Province(CMP)]established on a waste pile from an iron mine in CMP.A control(without fertilizer application)and six fertilization mixtures were tested(i=NPK;ii=NPK+micronutrients;iii=NPK+micronutrients+organic compost;iv=PK;v=PK+micronutrients;vi=PK+micronutrients+organic compost).Fertilization contributed to increased growth of both species,and treatments with NPK and micronutrients had the best results(up to 257%cf.controls),while organic fertilization did not show differences.Exotic Crotalaria had a greater number of nodules,higher nodule dry mass,chlorophyll a and b contents and showed free ammonium as the predominant N form,reflecting greater increments in biomass compared to native species.Although having lower growth,the use of this native species in the rehabilitation of mining areas should be considered,mainly because it has good development and meets current government legislation as an opportunity to restore local biodiversity. 展开更多
关键词 Biological nitrogen fixation Mining Nitrogen metabolism plant nutrition
下载PDF
Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice 被引量:13
3
作者 XU Chun-mei WANG Dan-ying +2 位作者 CHEN Song CHEN Li-ping ZHANG Xiu-fu 《Rice science》 SCIE 2013年第2期148-153,共6页
In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine sy... In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific. 展开更多
关键词 RICE AERATION root physiology nitrogen metabolism
下载PDF
Influences of Na_2CO_3 Stress on Physiological Metabolisms of Different Alkali Tolerant Varieties of Stevia rebaudiana 被引量:1
4
作者 绳仁立 原海燕 黄苏珍 《Agricultural Science & Technology》 CAS 2011年第12期1837-1841,共5页
[Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on c... [Objective] The research aimed to reveal physiological mechanisms of alkali tolerances of different Stevia rebaudiana varieties under alkali stress.[Method] By using matrix culture method,the influences of Na2CO3 on chlorophyll content,malondialdehyde(MDA),superoxide dismutase(SOD),peroxidase(POD) and Proline(Pro) content of leaves from different alkali tolerance varieties of S.rebaudiana [No.2 Shoutian(relative alkali tolerance variety) and No.4 Zhongshan(alkali sensitivity variety)] were studied.[Result] 1.2 g/L of Na2CO3 stress made that the chlorophyll contents of leaves from No.2 Shoutian and No.4 Zhongshan seedlings both decreased in different degrees.Moreover,MDA content of No.4 Zhongshan was higher than control during the whole stress period,and the largest increase amplitude was 43.2%.MDA content of No.2 Shoutian was lower than control in early and latter periods of stress,and increased the maximum on the 14th day of alkali stress,which was 24.4% higher than control.SOD activities of No.2 Shoutian and No.4 Zhongshan both showed a trend of first increasing and declining then in the alkali stress period,but the increasing extent of SOD activity in No.2 Shoutian was higher than that in No.4 Zhongshan.In latter period of Na2CO3 stress,SOD activity of No.2 Shoutian declined,but POD activity was higher than that of No.4 Zhongshan.It illustrated that POD had stronger scavenging capability of active oxygen.Pro contents of No.2 Shoutian and No.4 Zhongshan were higher than control in the stress period.It showed that the osmoregulation of Pro might not be key regulatory factor of alkali tolerance difference of the two S.rebaudiana varieties.[Conclusion] The research not only provided theoretical basis for further breeding new salt tolerance variety of S.rebaudiana,but also had important significance for improving utilized ratio of kaline soil and growing environment for mudflat in China. 展开更多
关键词 S.rebaudiana Na2CO3 stress physiological metabolism
下载PDF
从《Plant Physiology》的引文分析看植物生理学国外核心期刊的分布 被引量:1
5
作者 沈波 《情报科学》 CSSCI 1999年第6期679-681,共3页
用文献计量学方法,对《Plantphysiology)(植物生理学)1996—1998年刊载的论文及其引文进行统计分析,选出植物生理学国外核心期刊30种,并进行了分析。
关键词 植物生理学 核心期刊 期刊 引文分析 国外期刊
下载PDF
Effect of Fertilizer N Forms on Physiological Metabolism and Potassium Uptake of Flue-Cured Tobacco 被引量:2
6
作者 ZHOUJIHENG ZHUXIANLING 《Pedosphere》 SCIE CAS CSCD 1997年第2期177-184,共8页
The growth, chlorophyll composition, photosynthesis, respiration, K uptake and root K+ secretion offlue-cured tobacco as thected by different concentrations of N supplied as urea, NaNO3 and NH4NO3 werestudied under th... The growth, chlorophyll composition, photosynthesis, respiration, K uptake and root K+ secretion offlue-cured tobacco as thected by different concentrations of N supplied as urea, NaNO3 and NH4NO3 werestudied under the experimental condition of sand culture. The results showed that the content of K in thefiue-cured tobacco was not merely related with root vitality and uptake but also closely related with root cellmembrane structure and K+ secretion. 展开更多
关键词 fertilizer N forms flue-cured tobacco K uptake physiological metabolism root K^+ secretion
下载PDF
How to Improve the Teaching Quality of Plant Physiology? 被引量:1
7
作者 Qian MA Lixia HOU Xin LIU 《Asian Agricultural Research》 2016年第7期88-90,共3页
Plant Physiology is a compulsory specialized fundamental course,and plays an important role in the whole education of plant-related majors in agricultural institutions. In order to improve the educational effects and ... Plant Physiology is a compulsory specialized fundamental course,and plays an important role in the whole education of plant-related majors in agricultural institutions. In order to improve the educational effects and train specialized students in agriculture,the methods in Plant Physiology teaching in Qingdao Agricultural University are summarized in this paper. The results will provide a reference for improving the teaching of Plant Physiology in the future. 展开更多
关键词 plant physiology TEACHING CONTENT TEACHING methods TEACHING quality
下载PDF
Effects of mepiquat chloride and plant population density on leaf photosynthesis and carbohydrate metabolism in upland cotton 被引量:1
8
作者 LUO Haihua ZHANG Zhengxian +3 位作者 WU Jianfei WU Zhenjiang WEN Tianwang TANG Feiyu 《Journal of Cotton Research》 CAS 2023年第4期250-265,共16页
Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain... Background Mepiquat chloride(MC)application and plant population density(PPD)increasing are required for modern cotton production.However,their interactive effects on leaf physiology and carbohydrate metabolism remain obscure.This study aimed to examine whether and how MC and PPD affect the leaf morpho-physiological characteristics,and thus final cotton yield.PPD of three levels(D1:2.25 plants·m^(-2),D2:4.5 plants·m^(-2),and D3:6.75 plants·m^(-2))and MC dosage of two levels(MC0:0 g·ha^(-2),MC1:82.5 g·ha^(-2))were combined to create six treatments.The dynamics of nonstructual carbohydrate concentration,carbon metabolism-related enzyme activity,and photosynthetic attributes in cotton leaves were examined during reproductive growth in 2019 and 2020.Results Among six treatments,the high PPD of 6.75 plants·m^(-2)combined with MC application(MC1D3)exhibited the greatest seed cotton yield and biological yield.The sucrose,hexose,starch,and total nonstructural carbohydrate(TNC)concentrations peaked at the first flowering(FF)stage and then declined to a minimum at the first boll opening(FBO)stage.Compared with other treatments,MC1D3 improved starch and TNC concentration by 5.4%~88.4%,7.8%~52.0% in 2019,and by 14.6%~55.9%,13.5%~39.7% in 2020 at the FF stage,respectively.Additionally,MC1D3 produced higher transformation rates of starch and TNC from the FF to FBO stages,indicating greater carbon production and utilization efficiency.MC1D3 displayed the maximal specific leaf weight(SLW)at the FBO stage,and the highest chlorophyll a(Chl a),Chl b,and Chl a+b concentration at the mid-late growth phase in both years.The Rubisco activity with MC1D3 was 2.6%~53.2% higher at the flowering and boll setting stages in both years,and 2.4%~52.7% higher at the FBO stage in 2020 than those in other treatments.These results provided a explanation of higher leaf senescence-resistant ability in MC1D3.Conclusion Increasing PPD coupled with MC application improves cotton yield by enhancing leaf carbohydrate production and utilization efficiency and delaying leaf senescence. 展开更多
关键词 Gossypium hirsutum L. Mepiquat chloride plant population density Carbohydrate metabolism PHOTOSYNTHESIS
下载PDF
Ethanol Metabolism in Calluses of Several Selected Plant Species on Two Typical Plant-Growth-Regulator Balanced Media
9
作者 Yang Yue-sheng, Zheng Ying-dong, Chen Yu-fen, Zheng Ling College of Biotechnology, South China Agricultural University, Guangzhou 510642, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期500-504,共5页
For investigation on the characteristics of ethanol metabolism in tissues of different plant species, calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed cult... For investigation on the characteristics of ethanol metabolism in tissues of different plant species, calluses from eight selected plant species were cultured on medium supplemented with ethanol in tightly sealed culture flasks. Changes of the ethanol level were detected by gas chromatography. During the culture period, the calluses of tobacco, potato and petunia were, able to catabolize exogenous ethanol, resulting in the prominent decline of the ethanol level in the medium. The calluses of melon and peanut were also able to catabolize thanol but with lower efficiency. The other three calluses of carrot, soybean and rice did not catabolize ethanol but instead produced small to large amount of ethanol, resulting in the increase of the ethanol level in the media. It was also found that changing the balance between auxin and cytokinin could influence only the ethanol metabolism efficiency but could not change the metabolism patterns on ethanol of the cultured calluses. It can be concluded that, ethanol metabolism pattern of calluses in cultures is an innate physiological characteristic of the respective plant species. 展开更多
关键词 callus culture ethanol metabolism plant growth regulator plant physiology
下载PDF
Study on the Teaching Reform of Plant Physiology in the Context of Modern Education
10
作者 Ziyun ZHOU Yan TANG 《Asian Agricultural Research》 2017年第12期72-74,共3页
The Plant Physiology is characterized by wide coverage,strong theories and practicality,and limited class hour.In view of these characteristics,this paper introduced the reform of teaching methods,including reform of ... The Plant Physiology is characterized by wide coverage,strong theories and practicality,and limited class hour.In view of these characteristics,this paper introduced the reform of teaching methods,including reform of teaching content,reform of teaching methods and means,reform of experimental teaching and examination methods.It is expected to achieve the objective of improving the teaching effect of Plant Physiology. 展开更多
关键词 plant physiology Teaching reform Teaching methods
下载PDF
Comparative Analysis of Various Strains of Plant Growth Promoting Rhizobacteria on the Physiology of Garlic (Allium sativum)
11
作者 Shiza Tariq Asghari Bano Naeem Khan 《Natural Science》 CAS 2023年第3期79-90,共12页
Garlic is a most important medicinal herb belonging to the family Liliaceae. Both its leaves and bulb are edible. The current study was based on evaluating the growth promoting potential of plant growth promoting rhiz... Garlic is a most important medicinal herb belonging to the family Liliaceae. Both its leaves and bulb are edible. The current study was based on evaluating the growth promoting potential of plant growth promoting rhizobacteria (PGPR) on garlic (Allium sativum L.) growth and biochemical contents. Garlic cloves were inoculated with 3 kinds of PGPRs, Pseudomonas putida (KX574857), Pseudomonas stutzeri (Kx574858) and Bacillus cereus (ATCC14579) at 10<sup>8</sup> cells/mL prior to sowing. Under natural conditions, plants were grown in the net house. The PGPR significantly enhanced % germination, leaf and root growth and their biomass also increased the diameter of bulb and fresh and dry weight. The flavonoids, phenolics, chlorophyll, protein and sugar content were also significantly increased due to PGPR inoculation. The Pseudomonas stutzeri was found most effective for producing longer leaves with moderate sugar, high flavonoids (129%) and phenolics (263%) in bulb over control (Tap). The Pseudomonas putida exhibited a maximum increase in bulb diameter and bulb biomass with maximum phenolics and flavonoid contents. 展开更多
关键词 GARLIC plant Microbe Interaction RHIZOBACTERIA PGPR plant physiology Pseudomonas putida Pseudomonas stutzeri and Bacillus cereus
下载PDF
Genes and Transcriptional Factors in Chili Plant with Aspect to Metabolism and Resistance against Virus, Bacteria and Fungi: A Review
12
作者 Arfan Ali Muhammad Sarmad Iftikhar +9 位作者 Muhammad Munawar Muqadas Aleem Sajed Ali Saira Azam Idrees Ahmad Nasir Tayyab Husnain Umair Majid Muhammad Sameer Akram Tajasar Kamran Shehzad Bajwa Tahir Rehman Samiullah 《Journal of Agricultural Science and Technology(B)》 2014年第7期509-517,共9页
These days, there is a lot of discussion about genetically modified plants. There are different schools of thoughts in public, and some people adjusted while others are reluctant to accept genetically modified organis... These days, there is a lot of discussion about genetically modified plants. There are different schools of thoughts in public, and some people adjusted while others are reluctant to accept genetically modified organism foods. Many vegetables are transformed and are used in daily life. Chili is one of those which is genetically modified and used in our food. Race specific genes can be used more efficiently for disease resistance and improving metabolic pathways. Different genes and transcriptional factors are available in Capsicum for this purpose. We can optimize and use the better expressed genes while engineering the chili plants, Genetic modifications causing significant changes are related with metabolism, which cause disease resistance. 展开更多
关键词 Transcriptional factors chili plant metabolism resistance in chilies.
下载PDF
The effect of dehydration on plant regeneration and some physiology characters in rice calli 被引量:1
13
作者 ZHAO Chengzhang WU Lianbin YANG Changdeng QI Xiufang CNRRI,Hangzhou 310006,China 《Chinese Rice Research Newsletter》 1997年第2期7-8,共2页
The plant regeneration frequencies of ealli fromplant tissue and cell culture,especially that of thecalli from rice tissue culture and rice anther cul-ture,and that of the foreign-DNA-transfor-mation-derived rice call... The plant regeneration frequencies of ealli fromplant tissue and cell culture,especially that of thecalli from rice tissue culture and rice anther cul-ture,and that of the foreign-DNA-transfor-mation-derived rice calli is very low(usually 10-15%).It is therefor very important to improve theplant regeneration frequency of rice calli.A1- 展开更多
关键词 The effect of dehydration on plant regeneration and some physiology characters in rice calli
下载PDF
Physiological and Biochemical Response of Artificial Wetland Plant under Electric Field 被引量:6
14
作者 卢守波 宋新山 +2 位作者 张涛 王道源 严登华 《Agricultural Science & Technology》 CAS 2010年第5期121-124,共4页
By measuring wetland plants chlorophyll content,malondialdehyde(MDA) content and superoxide dismutase(SOD) enzyme activity,the changes of wetland plant physiological characeristics under different power strength were ... By measuring wetland plants chlorophyll content,malondialdehyde(MDA) content and superoxide dismutase(SOD) enzyme activity,the changes of wetland plant physiological characeristics under different power strength were studied,and the mechanism of electric field on plant physiological characteristics was analyzed to provide a theoretical basis for the pollutant removal ability strengthening of artificial wetland under electricfield.The results showed that compared with the control plants,low-intensity-voltage(1 V and 3 V) had no significant effect on the normal physiological and biochemical indexes of the plants,and the growth trend was better than the control group;with the voltage increasing,plant chlorophyll content,MDA content and SOD activity were greatly affected,indicating that plants were under strong oxidative stress,and the growth was damaged.Therefore,a suitable electric field could enhance the sewage treatment effect of constructed wetland. 展开更多
关键词 Electric field Artificial wetland plant physiological and biochemical indexes Response
下载PDF
Physiological Mechanism for Anthocyanins to Strengthen the Drought Tolerance of Plants 被引量:4
15
作者 唐小华 赵昶灵 +4 位作者 文国松 王文亚 王崇德 孙艳 白雪嵩 《Agricultural Science & Technology》 CAS 2014年第11期1935-1941,共7页
This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The pho... This paper summarized the possible physiological mechanism by which anthocyanins strengthen the tolerance of plants to drought. Drought stress can in-duce plant cel s to synthesize and accumulate anthocyanins. The photochemical properties, subcel ular accumulation sites and spatial distributions in plant organs and tissues of anthocyanins determine their function of strengthening plant tolerance, which is realized by three possible physiological mechanisms: (1) anthocyanins and their chelated metal ions can optimize the osmoregulation ability of the plant cel s by directly acting as the osmoregulation substances of the cel s, (2) anthocyanins with suitable spatial locations can reduce the photoinhibition of the plants under drought stresses, (3) anthocyanins can effectively maintain and improve the active oxygen-scavenging capacity of the plant cel s under drought conditions. Therein, that the anthocyanins enhance the antioxidant capacity of the plant cel s under drought stresses is probably the main reason for the anthocyanins to strengthen the drought tolerance of plants. This review could provide a reference for the mechanism re-search of the drought resistance and the breeding of the drought-resistant cultivars for the plants holding the ability to synthesize and accumulate anthocyanins. 展开更多
关键词 Anthocyanins Strengthen plant drought tolerance physiological mech-anism
下载PDF
Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants 被引量:25
16
作者 Shabir H.Wani Vinay Kumar +1 位作者 Varsha Shriram Saroj Kumar Sah 《The Crop Journal》 SCIE CAS CSCD 2016年第3期162-176,共15页
Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands o... Abiotic stresses including drought,salinity,heat,cold,flooding,and ultraviolet radiation causes crop losses worldwide.In recent times,preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance.However,the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities.Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance.Recent investigations have shown that phytohormones,including the classical auxins,cytokinins,ethylene,and gibberellins,and newer members including brassinosteroids,jasmonates,and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants.In this review,we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance,besides their engineering for conferring abiotic stress tolerance in transgenic crops.We also describe recent successes in identifying the roles of phytohormones under stressful conditions.We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants. 展开更多
关键词 PHYTOHORMONES ABIOTIC STRESS metabolIC engineering plant stresses
下载PDF
Effects of Copper on the Photosynthesis and Oxidative Metabolism of Amaranthus tricolor Seedlings 被引量:8
17
作者 KEShi-sheng 《Agricultural Sciences in China》 CAS CSCD 2007年第10期1182-1192,共11页
The objective of the present study was to gain better insight into the physiological mechanisms on the effects of copper (Cu) on photosynthesis and active oxygen metabolism in three-colored amaranth plant (Amaranth... The objective of the present study was to gain better insight into the physiological mechanisms on the effects of copper (Cu) on photosynthesis and active oxygen metabolism in three-colored amaranth plant (Amaranthus tricolor). Three- colored amaranth seedlings were subjected to different Cu levels in soils during the entire experimental period. The parameters of growth, photosynthesis, mineral elements contents, and active oxygen metabolism were investigated using plant physiological methods. The results showed that 2.0 and 4.0 mmol Cu kg^-1 treatments decreased the whole plant biomass to 91 and 73% of the control, respectively. The net photosynthetic rate (Pn) and the stomatal conductance (gs) were similarly reduced in the third leaves of three-colored amaranth seedlings treated with 2.0 and 4.0 mmol Cu kg^-1 soil, respectively. None of the investigated Cu levels decreased the internal CO2 concentration (Ci). The effect of Cu on the potential efficiency of photosystem Ⅱ (Fv/Fm) was negligible, whereas the effect of Cu on the PS Ⅱ quantum efficiency (ΦPS Ⅱ) after plant adaptation in actinic irradiation was more noticeable. On the other hand, decreases in water percentage, contents of photosynthetic pigments and mineral elements including Fe, K, and Mg, and significant increase in the Cu content were observed in the third leaves of Cu-treated plants. Superoxide dismutase (SOD) and peroxidase (POD) activities as well as the proline (Pro) content significantly increased in the third leaves of the three-colored amaranth seedlings treated with 2.0 and 4.0 mmol Cu kg^-1 soil, while catalase (CAT) and ascorbate peroxidase (APX) activities as well as the contents of carotenoid (Car), glutathione (GSH), and ascorbic acid (AsA) decreased, and accompanied by the increases in the contents of hydrogen peroxide (H2O2), superoxide anion (O2^-), and malondialdehyde (MDA), and electrolyte leakage. As a result of the imbalance of active oxygen metabolism, Pn and ΦPS Ⅱ decreased, and peroxidization enhanced under levels of 2.0 and 4.0 mmol Cu kg^-1 soil. Finally, the growth of three-colored amaranth plant was significantly inhibited. 展开更多
关键词 copper toxicity growth PHOTOSYNTHESIS active oxygen metabolism three-coloured amaranth plants (Amaranthus tricolor)
下载PDF
Brassinosteroids Mediate Endogenous Phytohormone Metabolism to Alleviate High Temperature Injury at Panicle Initiation Stage in Rice 被引量:2
18
作者 CHEN Yanhua WANG Yaliang +5 位作者 CHEN Huizhe XIANG Jing ZHANG Yikai WANG Zhigang ZHU Defeng ZHANG Yuping 《Rice science》 SCIE CSCD 2023年第1期70-86,共17页
High temperatures cause physiological and biochemical changes and significantly affect young panicle development of rice(Oryza sativa L.).Brassinosteroids play important roles in enhancing crop stress resistance.In th... High temperatures cause physiological and biochemical changes and significantly affect young panicle development of rice(Oryza sativa L.).Brassinosteroids play important roles in enhancing crop stress resistance.In this study,we subjected rice cultivars Huanghuazhan(heat-resistant)and IR36(heat-sensitive)to high temperature(HT,40 oC)or normal temperature(NT,33 oC)for 7 d at the panicle initiation stage,in conjunction with application of 24-epibrassinolide[EBR,a synthetic brassinolide(BR)]or brassinazole(BRZ,a BR biosynthesis inhibitor)at the beginning of the treatments.HT exacerbated spikelet degeneration and inhibited young panicle growth,which were partially prevented by EBR application,while BRZ application aggravated the reduction in spikelet number.HT decreased the contents of BR,active cytokinins(aCTK),active gibberellins(aGA)and indole-3-acetic acid(IAA),but increased the content of abscisic acid(ABA)in young panicles.The activities of key enzymes involved in sucrose hydrolysis,glycolysis and the tricarboxylic acid cycle in young panicles were decreased with the change of endogenous hormone levels under HT.In addition,the contents of H2O2 and malondialdehyde(MDA)were increased and the activities of antioxidant enzymes were decreased in young panicles.Exogenous application of EBR induced the expression of phytohormone biosynthesis-related genes and down-regulated the expression of phytohormone catabolism-related genes to increase the contents of endogenous BR,aCTK,aGA and ABA,thus promoting the decomposition and utilization of sucrose in young panicles,enhancing the activities of superoxide dismutase,catalase and peroxidase,and reducing the accumulation of H2O2 and MDA in young panicles,whereas application of BRZ had the opposite physiological effects.These results showed that brassinosteroids mediate endogenous phytohormone metabolism to alleviate HT injury at the panicle initiation stage in rice. 展开更多
关键词 RICE high temperature panicle initiation stage phytohormone metabolism physiological and biochemical indices
下载PDF
Anticancer Activities of Plant Secondary Metabolites:Rice Callus Suspension Culture as a New Paradigm 被引量:2
19
作者 Wusirika Ramakrishna Anuradha Kumari +1 位作者 Nafeesa Rahman Pallavi Mandave 《Rice science》 SCIE CSCD 2021年第1期13-30,共18页
Plant natural products including alkaloids,polyphenols,terpenoids and flavonoids have been reported to exert anticancer activity by targeting various metabolic pathways.The biological pathways regulated by plant produ... Plant natural products including alkaloids,polyphenols,terpenoids and flavonoids have been reported to exert anticancer activity by targeting various metabolic pathways.The biological pathways regulated by plant products can serve as novel drug targets.Plant natural compounds or their derivatives used for cancer treatment and some novel plant-based compounds which are used in clinical trials were discussed.Callus suspension culture with secondary metabolites can provide a continuous source of plant pharmaceuticals without time and space limitations.Previous research has shown that rice callus suspension culture can kill>95%cancer cells with no significant effect on the growth of normal cells.The role of candidate genes and metabolites which are likely to be involved in the process and their potential to serve as anticancer and anti-inflammatory agents were discussed.Large scale production of plant callus suspension culture and its constituents can be achieved using elicitors which enhance specific secondary metabolites combined with bioprocess technology. 展开更多
关键词 plant metabolite cancer metabolism rice callus suspension culture CYTOTOXICITY anticancer agent
下载PDF
Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr.Under saline soil conditions 被引量:2
20
作者 Jing Pan CuiHua Huang +5 位作者 Fei Peng Tao Wang Jie Liao ShaoXiu Ma QuanGang You Xian Xue 《Research in Cold and Arid Regions》 CSCD 2022年第6期393-402,共10页
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ... Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR. 展开更多
关键词 Nitraria tangutorum Bobr. Arbuscular mycorrhizal fungi plant growth-promoting rhizobacteria Morphological development Photosynthesis physiology Soil structure
下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部