Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chlorometh...Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.展开更多
This article is a preliminary study on antibacterial blends of polycaprolactone,chitosan and quaternized chitosan by melt processing.Blends were characterized,mechanical test and antibacterial evaluation against Esche...This article is a preliminary study on antibacterial blends of polycaprolactone,chitosan and quaternized chitosan by melt processing.Blends were characterized,mechanical test and antibacterial evaluation against Escherichia coli and Staphylococcus aureus,were conducted.Results showed that the antibacterial potential of chitosan was limited in blends and polycaprolactone/chitosan did not show significant antibacterial effect compared with neat polycaprolactone(PCL).Inhibition rates of polycaprolactone/quaternized chitosan were 39.2%99.9%against Escherichia coli,while inhibition rate was 40.9%99.9%against Staphylococcus aureus.When quaternized chitosan(QCTS)content was up to 20%,blends exhibited 99.9%inhibition rates against both two types of bacteria.展开更多
Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hyd...Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methiciUin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections.展开更多
For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitutio...For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitution(DS) were synthesized via the quaternization/sulfosuccination of acid-thinned corn starch(ATS) by varying the amounts of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride, maleic anhydride, and sodium hydrogen sulfite. The influence of paste aging on the properties of starch film cast from heat-induced starch paste was investigated and the properties were explored in terms of tensile strength, elongation, work at break, degree of crystallinity, and flex-fatigue resistance. The experimental results showed that the paste ageing generated adverse influence on the elongation, work at break, and flex-fatigue resistance of starch film. Further experiments showed that electroneutral quaternization/sulfosuccination of starch were able to alleviate the negative effect of paste ageing on the elongation, work at break, and flex-fatigue resistance, thereby obviously enhancing the elongation, work at break and flex-fatigue resistance, and thus reducing the drawback of brittleness. The enhancement depended on the amounts of the substituents introduced. With the increase in DS value, the elongation and work at break as well as flex-fatigue resistance continuously rose, whereas the tensile strength gradually reduced.展开更多
Quaternized cellulose( QC) derivatives were synthesized by reacting cellulose with 3-chloro-2-hydroxypropyl trimethyl ammonium chloride( CHPTAC) in an aqueous solution of Na OH-urea. The chemical structures and physic...Quaternized cellulose( QC) derivatives were synthesized by reacting cellulose with 3-chloro-2-hydroxypropyl trimethyl ammonium chloride( CHPTAC) in an aqueous solution of Na OH-urea. The chemical structures and physical properties of the obtained QC derivatives were characterized using nitrogen content analysis,Fourier transform infrared spectroscopy( FT-IR),~1H-nuclear magnetic resonance(1H-NMR),X-ray diffraction( XRD),and thermal gravity analysis( TGA). The FT-IR and ~1H-NMR results confirmed the successful introduction of cationic quaternary ammonium groups into the main chain of cellulose. A series of QC derivatives with the degree of substitution( DS) values ranging from 0. 33 to 0. 80 were derived by adjusting the molar ratio of CHPTAC to anhydroglucose unit( AGU) of cellulose,concentration of cellulose in the Na OH-urea solution,as well as reaction temperature and time. According to the DS values of the QC derivatives,the optimized synthetic conditions were as follows: 25℃ reaction temperature,3% cellulose in Na OH-urea solution,the molar ratio of etherification agent to glycosidic cellulose of 15∶ 1,and 12 h reaction time. The TGA and XRD results revealed that the crystalline structure was destroyed during etherification,and the thermal stability of the QC derivatives was lower than that of cellulose.展开更多
Lithium–sulfur (Li–S) batteries are great candidates for energy storage systems, but need to overcome theissues of low sulfur utilization and polysulfide shuttling for use in large-scale commercial applications.Rece...Lithium–sulfur (Li–S) batteries are great candidates for energy storage systems, but need to overcome theissues of low sulfur utilization and polysulfide shuttling for use in large-scale commercial applications.Recently, quaternized polymers have received much attention for their polysulfide trapping propertiesdue to electrostatic interaction. In this work, we report a series of polyarylether sulfone (PSF) binderswith different cation structures including imidazolium (Im), triethylammonium (Tr), and morpholinium(Mo). The ability of the these quaternized binders and the conventional poly(vinylidene fluoride) or PVDFbinder to capture polysulfide increases in the order of PVDF << PSF-Mo < PSF-Tr< PSF-Im. The delocalizedcharge on the imidazolium cation may promote the interaction between PSF-Im and polysulfide asindicated by an X-ray photoelectron spectroscopic study. The PSF-Im based cathodes showed the highestcapacity retention (77% at 0.2 C after 100 cycles and 84% at 0.5 C after 120 cycles), and the bestrate capability. This work demonstrates the importance of the cation structure in the design of efficientquaternized binders for high performance Li–S batteries.展开更多
Three quatemized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quatemized chitosan derivat...Three quatemized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quatemized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quatemized chitosan derivatives are favorable adsorbents for bile acid.展开更多
A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-...A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, (HNMR)-H-1 and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.展开更多
Hydroxypropyltrimethyl ammonium chloride chitosan(HACC)and hydroxypropyltrimethyl ammonium chloride fully deacetylated chitosan(De-HACC)were synthesized with various degrees of substitution by altering the ratio of ch...Hydroxypropyltrimethyl ammonium chloride chitosan(HACC)and hydroxypropyltrimethyl ammonium chloride fully deacetylated chitosan(De-HACC)were synthesized with various degrees of substitution by altering the ratio of chitosan to glycidyl trimethyl-ammonium chloride(GTMAC).The effects of the quaternary ammonium degree and the acetyl group of these polymers on immunostimulatory activities were detected in RAW 264.7 cells.The expression levels of nitrogen oxide(NO),interleukin-6(IL-6)and tumor necrosis factor(TNF-α)were compared.Results show that the removal of acetyl groups in chitosan obviously improved the degree of substitution of quaternary ammonium salts.In addition,HACC and De-HACC were capable of promoting immunological activity in a substitution-dependent manner;HACC was positively correlated,and De-HACC was negatively correlated.Among tested ratios,HACC-30%and De-HACC-54%performed better than the others,and De-HACC-54%performed the best.Generally,quaternized chitosan possesses immunostimulatory activity,which is related to the degree of quaternization and the acetyl group.展开更多
The paper describes some properties of new quaternized polysulfones obtained by quaternization of chloromethylated polysulfone with different tertiary amines - N,N-dimethylethylamine and N,N-dimethyloctylamine. Hydrop...The paper describes some properties of new quaternized polysulfones obtained by quaternization of chloromethylated polysulfone with different tertiary amines - N,N-dimethylethylamine and N,N-dimethyloctylamine. Hydrophilic/hydrophobic properties, morphological aspects and compatibility with red blood cells and platelets are affected by the alkyl radicals and by history of the formed films. The results obtained are useful in biomedical applications, including evaluation of bacterial adhesion to the surfaces, or utilization of modified polysulfones as semipermeable membranes.展开更多
Ion-molecular reactions of nucleogenic phenyl cations with the nucleophilic centers of 1,4-diazines have been investigated for the first time. Previously unknown tritium labeled N-phenyl quaternary derivatives of pyra...Ion-molecular reactions of nucleogenic phenyl cations with the nucleophilic centers of 1,4-diazines have been investigated for the first time. Previously unknown tritium labeled N-phenyl quaternary derivatives of pyrazine and quinoxaline, which are potential radioactive biomarkers, have been obtained by nuclear-chemical method.展开更多
基金partly financed by the Major State Basic Research Development Program of China(No.2003 CB615700)the National Natural Science Foundation of China(No.20604005).
文摘Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quaternized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance, which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.
基金the Science Foundations from Department of Education,Fujian Province,China(JZ180899).
文摘This article is a preliminary study on antibacterial blends of polycaprolactone,chitosan and quaternized chitosan by melt processing.Blends were characterized,mechanical test and antibacterial evaluation against Escherichia coli and Staphylococcus aureus,were conducted.Results showed that the antibacterial potential of chitosan was limited in blends and polycaprolactone/chitosan did not show significant antibacterial effect compared with neat polycaprolactone(PCL).Inhibition rates of polycaprolactone/quaternized chitosan were 39.2%99.9%against Escherichia coli,while inhibition rate was 40.9%99.9%against Staphylococcus aureus.When quaternized chitosan(QCTS)content was up to 20%,blends exhibited 99.9%inhibition rates against both two types of bacteria.
基金financially supported by the National Natural Science Foundation of China (No.31271015,81501856)National Key R&D Program (2016YFC1102100)+1 种基金Shanghai Science and Technology Development Fund (13JC1403900,13DZ2294000)Medical Engineering Collaborative Project of Shanghai Jiao Tong University (YG2014ZD01)
文摘Infection is one of the major causes of failure of orthopedic implants. Our previous study demonstrated that nanotube modification of the implant surface, together with nanotubes loaded with quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC), could effectively inhibit bacterial adherence and biofilm formation in vitro. Therefore, the aim of this study was to further investigate the in vitro cytocompatibility with osteogenic cells and the in vivo anti-infection activity of titanium implants with HACC-loaded nanotubes (NT-H). The titanium implant (Ti), nanotubes without polymer loading (NT), and nanotubes loaded with chitosan (NT-C) were fabricated and served as controls. Firstly, we evaluated the cytocompatibility of these specimens with human bone marrow-derived mesenchymal stem cells in vitro. The observation of cell attachment, proliferation, spreading, and viability in vitro showed that NT-H has improved osteogenic activity compared with Ti and NT-C. A prophylaxis rat model with implantation in the femoral medullary cavity and inoculation with methiciUin-resistant Staphylococcus aureus was established and evaluated by radiographical, microbiological, and histopathological assessments. Our in vivo study demonstrated that NT-H coatings exhibited significant anti-infection capability compared with the Ti and NT-C groups. In conclusion, HACC-loaded nanotubes fabricated on a titanium substrate show good compatibility with osteogenic cells and enhanced anti-infection ability in vivo, providing a good foundation for clinical application to combat orthopedic implant-associated infections.
基金Funded by the Open Project Program of Key Laboratory of Eco-Textiles,Ministry of Education,China(No.KLET0617)the Scientific Research Fund of Talent Introduction of Anhui Polytechnic University(No.2016YQQ004)
文摘For the purpose of alleviating the adverse effect of paste aging on the properties of corn starch film, a series of electroneutrally quaternized/sulfosuccinylated starches(EQSS) with different degrees of substitution(DS) were synthesized via the quaternization/sulfosuccination of acid-thinned corn starch(ATS) by varying the amounts of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride, maleic anhydride, and sodium hydrogen sulfite. The influence of paste aging on the properties of starch film cast from heat-induced starch paste was investigated and the properties were explored in terms of tensile strength, elongation, work at break, degree of crystallinity, and flex-fatigue resistance. The experimental results showed that the paste ageing generated adverse influence on the elongation, work at break, and flex-fatigue resistance of starch film. Further experiments showed that electroneutral quaternization/sulfosuccination of starch were able to alleviate the negative effect of paste ageing on the elongation, work at break, and flex-fatigue resistance, thereby obviously enhancing the elongation, work at break and flex-fatigue resistance, and thus reducing the drawback of brittleness. The enhancement depended on the amounts of the substituents introduced. With the increase in DS value, the elongation and work at break as well as flex-fatigue resistance continuously rose, whereas the tensile strength gradually reduced.
基金financially supported by grants from the National Natural Science Foundation of China(No.31500493)the Liaoning Educational Common Scientific Research Project(No.L2015044)+1 种基金the Liaoning Natural Science Foundation(No.2015020576)the Open Foundation of the Key Lab of Pulp and Paper Science & Technology,and Ministry of Education(Shandong Province),Qilu University of Technology(No.08031338)
文摘Quaternized cellulose( QC) derivatives were synthesized by reacting cellulose with 3-chloro-2-hydroxypropyl trimethyl ammonium chloride( CHPTAC) in an aqueous solution of Na OH-urea. The chemical structures and physical properties of the obtained QC derivatives were characterized using nitrogen content analysis,Fourier transform infrared spectroscopy( FT-IR),~1H-nuclear magnetic resonance(1H-NMR),X-ray diffraction( XRD),and thermal gravity analysis( TGA). The FT-IR and ~1H-NMR results confirmed the successful introduction of cationic quaternary ammonium groups into the main chain of cellulose. A series of QC derivatives with the degree of substitution( DS) values ranging from 0. 33 to 0. 80 were derived by adjusting the molar ratio of CHPTAC to anhydroglucose unit( AGU) of cellulose,concentration of cellulose in the Na OH-urea solution,as well as reaction temperature and time. According to the DS values of the QC derivatives,the optimized synthetic conditions were as follows: 25℃ reaction temperature,3% cellulose in Na OH-urea solution,the molar ratio of etherification agent to glycosidic cellulose of 15∶ 1,and 12 h reaction time. The TGA and XRD results revealed that the crystalline structure was destroyed during etherification,and the thermal stability of the QC derivatives was lower than that of cellulose.
基金supported by the Science and Technology Innovation Fund of Dalian(2018J12GX052)the National Natural Science Foundation of China(Grant No.21776042)the Fundamental Research Funds for the Central Universities of China(Grant no.DUT19ZD214)。
文摘Lithium–sulfur (Li–S) batteries are great candidates for energy storage systems, but need to overcome theissues of low sulfur utilization and polysulfide shuttling for use in large-scale commercial applications.Recently, quaternized polymers have received much attention for their polysulfide trapping propertiesdue to electrostatic interaction. In this work, we report a series of polyarylether sulfone (PSF) binderswith different cation structures including imidazolium (Im), triethylammonium (Tr), and morpholinium(Mo). The ability of the these quaternized binders and the conventional poly(vinylidene fluoride) or PVDFbinder to capture polysulfide increases in the order of PVDF << PSF-Mo < PSF-Tr< PSF-Im. The delocalizedcharge on the imidazolium cation may promote the interaction between PSF-Im and polysulfide asindicated by an X-ray photoelectron spectroscopic study. The PSF-Im based cathodes showed the highestcapacity retention (77% at 0.2 C after 100 cycles and 84% at 0.5 C after 120 cycles), and the bestrate capability. This work demonstrates the importance of the cation structure in the design of efficientquaternized binders for high performance Li–S batteries.
基金This project is supported by the Natural Science Foundation of Tianjin (No. 043610611)
文摘Three quatemized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quatemized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quatemized chitosan derivatives are favorable adsorbents for bile acid.
文摘A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, (HNMR)-H-1 and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.
基金*Supported by Key Deployment Projects of the Marine Science Research Center of Chinese Academy of Sciences(No.COMS2020J04)。
文摘Hydroxypropyltrimethyl ammonium chloride chitosan(HACC)and hydroxypropyltrimethyl ammonium chloride fully deacetylated chitosan(De-HACC)were synthesized with various degrees of substitution by altering the ratio of chitosan to glycidyl trimethyl-ammonium chloride(GTMAC).The effects of the quaternary ammonium degree and the acetyl group of these polymers on immunostimulatory activities were detected in RAW 264.7 cells.The expression levels of nitrogen oxide(NO),interleukin-6(IL-6)and tumor necrosis factor(TNF-α)were compared.Results show that the removal of acetyl groups in chitosan obviously improved the degree of substitution of quaternary ammonium salts.In addition,HACC and De-HACC were capable of promoting immunological activity in a substitution-dependent manner;HACC was positively correlated,and De-HACC was negatively correlated.Among tested ratios,HACC-30%and De-HACC-54%performed better than the others,and De-HACC-54%performed the best.Generally,quaternized chitosan possesses immunostimulatory activity,which is related to the degree of quaternization and the acetyl group.
文摘The paper describes some properties of new quaternized polysulfones obtained by quaternization of chloromethylated polysulfone with different tertiary amines - N,N-dimethylethylamine and N,N-dimethyloctylamine. Hydrophilic/hydrophobic properties, morphological aspects and compatibility with red blood cells and platelets are affected by the alkyl radicals and by history of the formed films. The results obtained are useful in biomedical applications, including evaluation of bacterial adhesion to the surfaces, or utilization of modified polysulfones as semipermeable membranes.
文摘Ion-molecular reactions of nucleogenic phenyl cations with the nucleophilic centers of 1,4-diazines have been investigated for the first time. Previously unknown tritium labeled N-phenyl quaternary derivatives of pyrazine and quinoxaline, which are potential radioactive biomarkers, have been obtained by nuclear-chemical method.