Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c...Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.展开更多
This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thick...This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces.Additionally,mixed-mode damage plastic constitutive models were pro-posed for the concrete potential fracture surfaces and FRP-concrete interface,considering interfacial friction.Furthermore,an anisotropic plastic constitutive model was developed for the FRP composite jacket.The CZM model proposed in this study was validated using experimental data from plain concrete and large rupture strain(LRS)FRP-confined concrete subjected to cyclic compression.The simulation results demonstrate that the pro-posed model accurately predicts the mechanical response of both concrete and FRP-confined concrete under cyc-lic compression.Lastly,various parametric studies were conducted to investigate the internal failure mechanism of FRP-confined concrete under cyclic loading to analyze the influence of the inner friction plasticity of different components.展开更多
Considering the pore deformation and permeability changes during dilation-recompaction in cyclic steam stimulation(CSS),an existing geomechanical model is improved and thermo-mechanically coupled with the flow equatio...Considering the pore deformation and permeability changes during dilation-recompaction in cyclic steam stimulation(CSS),an existing geomechanical model is improved and thermo-mechanically coupled with the flow equations to form a coupled flow-geomechanical model.The impacts of dilation-recompaction parameters can be quantified through sensitivity analysis and uncertainty assessment utilizing the synergy between Latin hypercube designs and response surface methodology.The improved coupled flow-geomechanical model allows a more reasonable history-matching of steam injection pressure and volume and oil/water production volume.In both the linear and quadratic models,the rise in recompaction pressure has the most significant effect on the rise in the volumes of steam injection and water production,both rock compressibility and recompaction pressure are positively correlated with steam injectivity and oil/water production,and the dilation pressure is negatively correlated with steam injectivity and oil/water production.In the linear model,dilation pressure has the most significant negative impact on the cumulative oil production,and compressibility and recompaction pressure are positively correlated with oil production.In the quadratic model,the rise in recompaction pressure has the most significant effect on the rise in the cumulative volumes of oil/water production and steam injection.The interactions between the dilation/recompaction pressures and spongy-rock compressibility negatively affect the cumulative volumes of oil/water production and steam injection.展开更多
The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acous...The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,an...To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,and the mesoscopic pore structures of salt rock before and after fatigue tests and under different cycle numbers were measured using CT scanning instrument.Based on the test results,the effects of the cycle number and the upper-limit stress on the evolution of cracks,pore morphology,pore number,pore volume,pore size,plane porosity,and volume porosity of salt rock were analyzed.The failure path of salt rock specimens under cyclic loading was analyzed using the distribution law of plane porosity.The damage variable of salt rock under cyclic loading was defined on basis of the variation of volume porosity with cycle number.In order to describe the fatigue deformation behavior of salt rock under cyclic loading,the nonlinear Burgers damage constitutive model was further established.The results show that the model established can better reflect the whole development process of fatigue deformation of salt rock under cyclic loading.展开更多
This paper proposes a comprehensive and integrative model which will contribute to a successful place branding.The new model is proposed based on the analysis of 30 previous place branding models and enriched by the l...This paper proposes a comprehensive and integrative model which will contribute to a successful place branding.The new model is proposed based on the analysis of 30 previous place branding models and enriched by the literature review.The result of this work is the conceptual model that offers a more global perspective of place branding and consists of the following 11 interrelated elements:place,brand leadership,community stakeholders engagement,brand vision,brand architecture,brand identity,brand communications,brand image,brand experience,brand actions and brand evaluation,which must be incorporated into any place branding model as they prove to be relevant and play a strategic role in the branding process.They are essential for place brand development and management,and represent key success factors of place brands.The research implications are to give researchers a guide for literature development,theory building,and future research.The practical implications are to offer practitioners,professionals,local officials,and even governments a model that explains the place branding process to effectively create and manage a place brand.Unlike previous models which take different perspectives on the branding process,this one is holistic as it encompasses(almost)all of them.The new model highlights also new elements that do not appear in the previous ones.展开更多
The rapid global outbreak of coronavirus disease 2019(COVID-19)and the surge of infected patients have led to the verge of exhaustion of critical care medicine resources worldwide,especially with regard to critical ca...The rapid global outbreak of coronavirus disease 2019(COVID-19)and the surge of infected patients have led to the verge of exhaustion of critical care medicine resources worldwide,especially with regard to critical care staff.A holistic care model on time-sharing management for severe and critical COVID-19 patients is proposed,which includes formulation of individualized care objectives and plans,identification of care tasks in each shift and making detailed checklist,and management of quality of care.This study was conducted in the COVID-19 treatment center of Harbin,Heilongjiang Province.The data collected from the treatment center were recorded and analyzed.From the results we can deduce that it is especially suitable for non-intensive care unit(non-ICU)nurses to adapt care management mode of ICU as soon as possible and ensure the quality and efficiency of care during the epidemic.The holistic care model on time-sharing management for severe and critical cases with COVID-19 proposed based on our daily work experiences can assist in improving the quality and efficiency of care,thus reducing the mortality rate of patients in ICU.展开更多
An engine cyclic variation model has been built by using the residual gas temperature for the n th cycle as the input of the model, through constant pressure intake process, adiabatic compression process, constan...An engine cyclic variation model has been built by using the residual gas temperature for the n th cycle as the input of the model, through constant pressure intake process, adiabatic compression process, constant volume combustion process, adiabatic expansion process, adiabatic blow down process and constant pressure exhaust process to approximate the thermodynamic processes in the cylinder, finally the residual gas temperature for the ( n+1) th cycle can be estimated. Because of the adding of engine operating parameters such as engine speed, spark advance, equivalence ratio, intake air pressure, intake air temperature to the model, effects of these parameters on cyclic variation can be estimated quantitatively. Since residual gas temperature fluctuation between cycles reflects the circumstances of engine cyclic variation, parameters to which residual gas temperature is sensitive are most likely used as the means to control cyclic variation. Model simulation shows that for the nearly stiochiometric mixture, cyclic variation is not obvious or even quite stable, but for the lean mixture, under the circumstances of partial load and larger spark advances, engine cyclic variations occur chaotically or with bifurcation.展开更多
To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoir...To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented.展开更多
A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic defor...A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.展开更多
This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict...This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict the mechanical behaviour of soft sandstone under monotonic and cyclic loadings. In this model, the loading surface always passes through the current stress state regardless of the type of loading. Destruction of the cementation bonds by plastic deformation in the model is considered as the primary mechanism responsible for the mechanical degradation of loosely cemented sands/weak rock.To model cyclic response, the unloading plastic and elastic moduli are formulated based on the loading/reloading plastic and elastic moduli. The proposed model was implemented in FLAC2D and evaluated against laboratory triaxial tests under monotonic and cyclic loadings, and the model results agreed well with the experimental observations. For cyclic tests, hysteresis loops are captured with reasonable accuracy.展开更多
Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the correspondin...Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure.Thus,this work reviews the progress in the cyclic plasticity of Mg alloys.First,the existing macroscopic and microscopic experimental results of Mg alloys are summarized.Then,corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed.Finally,some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.展开更多
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge...Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.展开更多
The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths a...The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.展开更多
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of...Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.展开更多
Cyclic total reflux(CTR) batch distillation is a promising mode of the process but lacking of appropriate modeling for the period of filling the reflux drum.A new dynamic modeling method for the simulation of CTR batc...Cyclic total reflux(CTR) batch distillation is a promising mode of the process but lacking of appropriate modeling for the period of filling the reflux drum.A new dynamic modeling method for the simulation of CTR batch distillation is proposed in this work,in which the changes in column holdup and liquid flow rate during the filling of the drum,and the consequent change in valid number of theoretical plates are considered.The effect of drum holdup on operation time is investigated and the optimal drum holdup is obtained from the simulation.The dynamic modeling is compared to the conventional modeling without consideration of change in liquid flow rate. The experimental result shows that the present modeling is more reliable and more accurate,especially for the column with large liquid holdup.展开更多
Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded ...Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loading γcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.展开更多
An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and exte...An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and extension tests were conducted to study the parameters of the model. Results showed that the relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain were nearly unique, when the initial octahedral shear stress ratios of specimens were equal to 0.3, 0.5 and 0.7. The relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain determined from the cyclic triaxial compression tests were basically the same as those determined from the cyclic triaxial extension tests. Furthermore, the relationships were not related to the initial stress condition, the test stress state and the octahedral cyclic shear stress ratio. The relationships determined from the cyclic triaxial tests under no deviatoric stress were basically the same as those determined from the cyclic triaxial tests under deviatoric stress. The change of the octahedral cyclic accumulative strain with the number of cycles was unique under different tests stress states. An equivalent visco-elastic constitutive model of saturated soft clay under UU condition was initially established.展开更多
The accuracy and effi ciency of the modelling techniques utilized to model the nonlinear behavior of structural components is a signifi cant issue in earthquake engineering. In this study, the suffi ciency of three di...The accuracy and effi ciency of the modelling techniques utilized to model the nonlinear behavior of structural components is a signifi cant issue in earthquake engineering. In this study, the suffi ciency of three diff erent modelling techniques that can be employed to simulate the structural behavior of columns is investigated. A fi ber-based fi nite length plastic hinge (FB-FLPH) model is calibrated in this study. In order to calibrate the FB-FLPH model, a novel database of the cyclic behavior of hollow steel columns under simultaneous axial and lateral loading cycles with varying amplitudes is used. By employing the FB-FLPH model calibrated in this study, the interaction of the axial force and the bending moment in columns is directly taken into account, and the deterioration in the cyclic behavior of these members is implicitly considered. The superiority of the calibrated FB-FLPH modelling approach is examined compared with the cases in which conventional fi ber-based distributed plasticity and concentrated plasticity models are utilized. The effi ciency of the enumerated modelling techniques is probed when they are implemented to model the columns of a typical special moment frame in order to prove the advantage of the FB-FLPH modelling approach.展开更多
基金the financial support provided by the National Natural Science Foundation of China(Grant No.42272310).
文摘Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.
基金funded by the Natural Science Foundation of Fujian Province(2023J01938)the Scientific Research Startup Foundation of Fujian University of Technology(GY-Z21026).
文摘This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces.Additionally,mixed-mode damage plastic constitutive models were pro-posed for the concrete potential fracture surfaces and FRP-concrete interface,considering interfacial friction.Furthermore,an anisotropic plastic constitutive model was developed for the FRP composite jacket.The CZM model proposed in this study was validated using experimental data from plain concrete and large rupture strain(LRS)FRP-confined concrete subjected to cyclic compression.The simulation results demonstrate that the pro-posed model accurately predicts the mechanical response of both concrete and FRP-confined concrete under cyc-lic compression.Lastly,various parametric studies were conducted to investigate the internal failure mechanism of FRP-confined concrete under cyclic loading to analyze the influence of the inner friction plasticity of different components.
文摘Considering the pore deformation and permeability changes during dilation-recompaction in cyclic steam stimulation(CSS),an existing geomechanical model is improved and thermo-mechanically coupled with the flow equations to form a coupled flow-geomechanical model.The impacts of dilation-recompaction parameters can be quantified through sensitivity analysis and uncertainty assessment utilizing the synergy between Latin hypercube designs and response surface methodology.The improved coupled flow-geomechanical model allows a more reasonable history-matching of steam injection pressure and volume and oil/water production volume.In both the linear and quadratic models,the rise in recompaction pressure has the most significant effect on the rise in the volumes of steam injection and water production,both rock compressibility and recompaction pressure are positively correlated with steam injectivity and oil/water production,and the dilation pressure is negatively correlated with steam injectivity and oil/water production.In the linear model,dilation pressure has the most significant negative impact on the cumulative oil production,and compressibility and recompaction pressure are positively correlated with oil production.In the quadratic model,the rise in recompaction pressure has the most significant effect on the rise in the cumulative volumes of oil/water production and steam injection.The interactions between the dilation/recompaction pressures and spongy-rock compressibility negatively affect the cumulative volumes of oil/water production and steam injection.
基金funded by Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (GJNY-20-113-03),SHGF-16-19the Fundamental Research Funds for the Central Universities (06500182)+2 种基金Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining (EC2021004)Funds from State Key Laboratory of Coal Resources in Western China (SKLCRKF20-07)Funds from Humboldt Research Fellowship,Funds from NSFC (52204086).
文摘The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金supported by the National Natural Science Foundation of China(No.52178354).
文摘To investigate the macroscopic fatigue properties and the mesoscopic pore evolution characteristics of salt rock under cyclic loading,fatigue tests under different upper-limit stresses were carried out on salt rock,and the mesoscopic pore structures of salt rock before and after fatigue tests and under different cycle numbers were measured using CT scanning instrument.Based on the test results,the effects of the cycle number and the upper-limit stress on the evolution of cracks,pore morphology,pore number,pore volume,pore size,plane porosity,and volume porosity of salt rock were analyzed.The failure path of salt rock specimens under cyclic loading was analyzed using the distribution law of plane porosity.The damage variable of salt rock under cyclic loading was defined on basis of the variation of volume porosity with cycle number.In order to describe the fatigue deformation behavior of salt rock under cyclic loading,the nonlinear Burgers damage constitutive model was further established.The results show that the model established can better reflect the whole development process of fatigue deformation of salt rock under cyclic loading.
文摘This paper proposes a comprehensive and integrative model which will contribute to a successful place branding.The new model is proposed based on the analysis of 30 previous place branding models and enriched by the literature review.The result of this work is the conceptual model that offers a more global perspective of place branding and consists of the following 11 interrelated elements:place,brand leadership,community stakeholders engagement,brand vision,brand architecture,brand identity,brand communications,brand image,brand experience,brand actions and brand evaluation,which must be incorporated into any place branding model as they prove to be relevant and play a strategic role in the branding process.They are essential for place brand development and management,and represent key success factors of place brands.The research implications are to give researchers a guide for literature development,theory building,and future research.The practical implications are to offer practitioners,professionals,local officials,and even governments a model that explains the place branding process to effectively create and manage a place brand.Unlike previous models which take different perspectives on the branding process,this one is holistic as it encompasses(almost)all of them.The new model highlights also new elements that do not appear in the previous ones.
基金Supported by The National Natural Science Foundation of China,No.81770276and Nn10 Program of Harbin Medical University Cancer Hospital and Scientific Research Project of Heilongjiang Health and Family Planning Commission,No.2018086.
文摘The rapid global outbreak of coronavirus disease 2019(COVID-19)and the surge of infected patients have led to the verge of exhaustion of critical care medicine resources worldwide,especially with regard to critical care staff.A holistic care model on time-sharing management for severe and critical COVID-19 patients is proposed,which includes formulation of individualized care objectives and plans,identification of care tasks in each shift and making detailed checklist,and management of quality of care.This study was conducted in the COVID-19 treatment center of Harbin,Heilongjiang Province.The data collected from the treatment center were recorded and analyzed.From the results we can deduce that it is especially suitable for non-intensive care unit(non-ICU)nurses to adapt care management mode of ICU as soon as possible and ensure the quality and efficiency of care during the epidemic.The holistic care model on time-sharing management for severe and critical cases with COVID-19 proposed based on our daily work experiences can assist in improving the quality and efficiency of care,thus reducing the mortality rate of patients in ICU.
文摘An engine cyclic variation model has been built by using the residual gas temperature for the n th cycle as the input of the model, through constant pressure intake process, adiabatic compression process, constant volume combustion process, adiabatic expansion process, adiabatic blow down process and constant pressure exhaust process to approximate the thermodynamic processes in the cylinder, finally the residual gas temperature for the ( n+1) th cycle can be estimated. Because of the adding of engine operating parameters such as engine speed, spark advance, equivalence ratio, intake air pressure, intake air temperature to the model, effects of these parameters on cyclic variation can be estimated quantitatively. Since residual gas temperature fluctuation between cycles reflects the circumstances of engine cyclic variation, parameters to which residual gas temperature is sensitive are most likely used as the means to control cyclic variation. Model simulation shows that for the nearly stiochiometric mixture, cyclic variation is not obvious or even quite stable, but for the lean mixture, under the circumstances of partial load and larger spark advances, engine cyclic variations occur chaotically or with bifurcation.
基金EU Fifth Framework Program: Environment, Energy and Sustainable Development Research and Technological Development Activity of Generic Nature: The Fight Against Natural and Technological Hazards, Research Project QUAKER Under Contract No. EVG1–CT–2002–00064
文摘To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussees. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimentalp-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, "pinching" behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented.
基金Financial supports by the National Natural Science Foundation of China (Grant 11532010)the project for Sichuan Provincial Youth Science and Technology Innovation Team, China (Grant 2013TD0004)
文摘A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite and detwinned martensite , as well as the phase transitions occurring between each pair of phases (, , , , and are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, , and and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.
基金Funding for this project has been provided by BP Canada and the Nature Science and Engineering Research Council of Canada(NSERC)
文摘This paper presents a model to simulate the monotonic and cyclic behaviours of weakly cemented sands.An elastoplastic constitutive model within the framework of bounding surface plasticity theory is adopted to predict the mechanical behaviour of soft sandstone under monotonic and cyclic loadings. In this model, the loading surface always passes through the current stress state regardless of the type of loading. Destruction of the cementation bonds by plastic deformation in the model is considered as the primary mechanism responsible for the mechanical degradation of loosely cemented sands/weak rock.To model cyclic response, the unloading plastic and elastic moduli are formulated based on the loading/reloading plastic and elastic moduli. The proposed model was implemented in FLAC2D and evaluated against laboratory triaxial tests under monotonic and cyclic loadings, and the model results agreed well with the experimental observations. For cyclic tests, hysteresis loops are captured with reasonable accuracy.
基金financially supported by the National Natural Science Foundation of China(No.11532010)Doctoral Innovation Fund Program of Southwest Jiaotong University。
文摘Fatigue analysis has always been a concern in the design and assessment of Mg alloy structure components subjected to cyclic loading,and research on the cyclic plasticity is fundamental to investigate the corresponding fatigue failure.Thus,this work reviews the progress in the cyclic plasticity of Mg alloys.First,the existing macroscopic and microscopic experimental results of Mg alloys are summarized.Then,corresponding macroscopic phenomenological constitutive models and crystal plasticity-based models are reviewed.Finally,some conclusions and recommended topics on the cyclic plasticity of Mg alloys are provided to boost the further development and application of Mg alloys.
基金funded by the Key Program of National Natural Science Foundation of China (41630643)the National Key Research and Development Program of China (2017YFC1501302)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1701)
文摘Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.
基金sponsored by the Norwegian Public Roads Administration(NPRA)
文摘The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.
基金Key Research Project of National Natural Science Foundation of China Under Grant No.90715018National Basic Research Program of China Under Grant No.2007CB714200the Special Fund for the Commonweal Industry of China Under Grant No.200808022
文摘Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-l, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.
文摘Cyclic total reflux(CTR) batch distillation is a promising mode of the process but lacking of appropriate modeling for the period of filling the reflux drum.A new dynamic modeling method for the simulation of CTR batch distillation is proposed in this work,in which the changes in column holdup and liquid flow rate during the filling of the drum,and the consequent change in valid number of theoretical plates are considered.The effect of drum holdup on operation time is investigated and the optimal drum holdup is obtained from the simulation.The dynamic modeling is compared to the conventional modeling without consideration of change in liquid flow rate. The experimental result shows that the present modeling is more reliable and more accurate,especially for the column with large liquid holdup.
基金Supported by Key Project of Chinese National Programs for Fundamental Research and Development(No.2017YFB 0310105-03)Key Foundation Projects of Hubei Province(No.2016CFA074)Technology Innovation Major Project of Hubei Province(No.2018AAA001-04)
文摘Concrete creep under both static and cyclic loading conditions was investigated. Four groups of high-strength high-performance concrete(HSHPC) prism specimens were fabricated, and three of these specimens were loaded periodically by the MTS Landmark Fatigue Testing Machine System. Creep characteristics and creep coefficients of HSHPC under static loading and cyclic loading, respectively, were obtained and compared. The experimental results show that the creep strains under cyclic loading with a mean stress of 0.4 fcp and an amplitude of 0.2 fcp increase significantly compared with the creep strains under static loading, and the maximum value was 1.2-2.3 times at early stages. In addition, the creep coefficient increases nonlinearly with the number of cyclic loading repetitions. The influence coefficient for cyclic loading γcyc=1.088×(N/N0)0.078 was introduced based on the previous HSHPC creep model, and then the modified creep model under cyclic loading was established. Finally, the residual method, the CEB coefficient of variation method and the B3 coefficient of variation method were applied to evaluate the modified creep model. The statistical results demonstrate that the modified creep model agrees well with the experimental measurements. Hence, it has important theoretical and practical values for accurately predicting the deflection of concrete bridges under cyclic traffic loading.
基金Supported by National Natural Science Foundation of China ( No. 51179120)
文摘An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and extension tests were conducted to study the parameters of the model. Results showed that the relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain were nearly unique, when the initial octahedral shear stress ratios of specimens were equal to 0.3, 0.5 and 0.7. The relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain determined from the cyclic triaxial compression tests were basically the same as those determined from the cyclic triaxial extension tests. Furthermore, the relationships were not related to the initial stress condition, the test stress state and the octahedral cyclic shear stress ratio. The relationships determined from the cyclic triaxial tests under no deviatoric stress were basically the same as those determined from the cyclic triaxial tests under deviatoric stress. The change of the octahedral cyclic accumulative strain with the number of cycles was unique under different tests stress states. An equivalent visco-elastic constitutive model of saturated soft clay under UU condition was initially established.
文摘The accuracy and effi ciency of the modelling techniques utilized to model the nonlinear behavior of structural components is a signifi cant issue in earthquake engineering. In this study, the suffi ciency of three diff erent modelling techniques that can be employed to simulate the structural behavior of columns is investigated. A fi ber-based fi nite length plastic hinge (FB-FLPH) model is calibrated in this study. In order to calibrate the FB-FLPH model, a novel database of the cyclic behavior of hollow steel columns under simultaneous axial and lateral loading cycles with varying amplitudes is used. By employing the FB-FLPH model calibrated in this study, the interaction of the axial force and the bending moment in columns is directly taken into account, and the deterioration in the cyclic behavior of these members is implicitly considered. The superiority of the calibrated FB-FLPH modelling approach is examined compared with the cases in which conventional fi ber-based distributed plasticity and concentrated plasticity models are utilized. The effi ciency of the enumerated modelling techniques is probed when they are implemented to model the columns of a typical special moment frame in order to prove the advantage of the FB-FLPH modelling approach.