In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectra...In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.展开更多
As an important branch of biomedical engineering, respiratory mechanics helps to understand the physiology of the respiratory system and provides fundamental data for developing such clinical technologies as ventilato...As an important branch of biomedical engineering, respiratory mechanics helps to understand the physiology of the respiratory system and provides fundamental data for developing such clinical technologies as ventilators. To solve different clinical problems, researchers have developed numerous models at various scales that describe biological and mechanical properties of the respiratory system. During the past decade, benefiting from the continuous accumulation of clinical data and the dramatic progress of biomedical technologies (e.g. biomedical imaging), the theoretical modeling of respiratory mechanics has made remarkable progress regarding the macroscopic properties of the respiratory process, complexities of the respiratory system, gas exchange within the lungs, and the coupling interaction between lung and heart. The present paper reviews the advances in the above fields and proposes potential future projects.展开更多
In the above paper the entropy generation is defined as fol-lows (Eq. (25) in Ref. [1]) In Eq. (1) the parameter RD appears. However, the parameter RD is absent from the dimensional equations in Ref. [1]. It is also a...In the above paper the entropy generation is defined as fol-lows (Eq. (25) in Ref. [1]) In Eq. (1) the parameter RD appears. However, the parameter RD is absent from the dimensional equations in Ref. [1]. It is also absent from the transformed Eqs. (18)–(21) in Ref. [1]. It is also absent from the Nomenclature (Rd is a different parameter named as radiation parameter). This is a serious problem. From the first continuity Eq. (1) until Eq. (24) the parameter RD is absent and appears suddenly in Eq. (25). This is irrational. It is not allowed to use a parameter which is absent from the physical problem.展开更多
Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cel...Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cells, intermediate filament proteins play key roles to reinforce cells subjected to large-deformation, and that they participate in signal transduction, and it was proposed that their nanome- chanical properties are critical to perform those functions. However, it is still poorly understood how the nanoscopic structure, as well as the combination of chemical composition, molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein's structure. A multiple scale method is discussed, used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser method- ology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments, coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.展开更多
AIMS AND SCOPEThis journal has two independent editions—one in Chinese and the other in English.The Chinese bimonthly Acta Mechanica Sinica was first published in 1957, while the Englishquarterly, Acta Mechanica Sini...AIMS AND SCOPEThis journal has two independent editions—one in Chinese and the other in English.The Chinese bimonthly Acta Mechanica Sinica was first published in 1957, while the Englishquarterly, Acta Mechanica Sinica (English Series), was founded in 1985. High quality originalworks on all aspects of the science of mechanics are published in either of the editions. A展开更多
The present paper describes the theoretical treatment performed for the geometrical optimization of advanced and improved-shape waveforms as airways pressure excitation for controlled breathings in dual-controlled ven...The present paper describes the theoretical treatment performed for the geometrical optimization of advanced and improved-shape waveforms as airways pressure excitation for controlled breathings in dual-controlled ventilation applied to anaesthetized or severe brain injured patients, the respiratory mechanics of which can be assumed linear. Advanced means insensitive to patient breathing activity as well as to ventilator settings while improved-shape intends in comparison to conventional square waveform for a progressive approaching towards physiological transpulmonary pressure and respiratory airflow waveforms. Such functional features along with the best ventilation control for the specific therapeutic requirements of each patient can be achieved through the implementation of both diagnostic and compensation procedures effectively carried out by the Advance Lung Ventilation System (ALVS) already successfully tested for square waveform as airways pressure excitation. Triangular and trapezoidal waveforms have been considered as airways pressure excitation. The results shows that the latter fits completely the requirements for a physiological pattern of endoalveolar pressure and respiratory airflow waveforms, while the former exhibits a lower physiological behaviour but it is anyhow periodically recommended for performing adequately the powerful diagnostic procedure.展开更多
In order to improve the destruction efficiency of dioxins and also for developing new dioxin control technology, the destruction mechanisms of 2,3,7,8-tetrachlorodihenzo-p-dioxin (2,3,7,8-TCDD) by O3 and NO3, were i...In order to improve the destruction efficiency of dioxins and also for developing new dioxin control technology, the destruction mechanisms of 2,3,7,8-tetrachlorodihenzo-p-dioxin (2,3,7,8-TCDD) by O3 and NO3, were investigated employing quantum chemical calculations. For involved reactions, the microcosmic reaction processes were analyzed and depicted in detail based on geometry optimizations made by the B3LYP/6-31G(d) method. At the same time, the reaction activation energies were also calculated at the MP2/6- 311G(d,p)//B3LYP/6-31G(d) level. Configuration analysis indicated that 2,3,7,8-TCDD could be destroyed by 03 and NO3 in two different ways. The destruction of 2,3,7,8-TCDD by 03 proceeded via the addition of 03 and the cleavage of C=C while the destruction of 2,3,7,8-TCDD by NO3 proceeded via the substitution of chlorine by NO3. Calculated results show that, the activation energy of the destruction reaction of 2,3,7,8-TCDD by NO3 (267.48 kJ/mol) is much larger than that of the destruction reaction of 2,3,7,8-TCDD by O3 (51.20 kJ/mol). This indicated that the destruction of 2,3,7,8-TCDD by 03 is much more efficient than that of 2,3,7,8-TCDD by NO3. The reason why the activation energy for the destruction reaction of 2,3,7,8-TCDD by NO3 is so large, is also discussed.展开更多
The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional ...The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.展开更多
The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geo...The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.展开更多
The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + ...The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.展开更多
The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included...The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.展开更多
Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and or...Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect.展开更多
基金supported by the National Key R&D Program of China (No. 2017YFA0304203)the National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC)+3 种基金Changjiang Scholars and Innovative Research Team at the University of the Ministry of Education of China (No. IRT_17R70)National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108 and 627010407)111 Project (No. D18001)Fund for Shanxi (No. 1331KSC)
文摘In the field of dual-pulse laser-induced breakdown spectroscopy(DP-LIBS)research,the pursuit of methods for determining pulse intervals and other parameters quickly and conveniently in order to achieve optimal spectral signal enhancement is paramount.To aid researchers in identification of optimal signal enhancement conditions and more accurate interpretation of the underlying signal enhancement mechanisms,theoretical simulations of the spatiotemporal processes of coaxial DP-LIBS-induced plasma have been established in this work.Using a model based on laser ablation and two-dimensional axisymmetric fluid dynamics,plasma evolutions during aluminum–magnesium alloy laser ablation under single-pulse and coaxial dualpulse excitations have been simulated.The influences of factors,such as delay time,laser fluence,plasma temperature,and particle number density,on the DP-LIBS spectral signals are investigated.Under pulse intervals ranging from 50 to 1500 ns,the time evolutions of spectral line intensity,dual-pulse emission enhancement relative to the single-pulse results,laser irradiance,spatial distribution of plasma temperature and species number density,as well as laser irradiance shielded by plasma have been obtained.The study indicates that the main reason behind the radiation signal enhancement in coaxial DP-LIBS-induced plasma is attributed to the increased species number density and plasma temperature caused by the second laser,and it is inferred that the shielding effect of the plasma mainly occurs in the boundary layer of the stagnation point flow over the target surface.This research provides a theoretical basis for experimental research,parameter optimization,and signal enhancement tracing in DP-LIBS.
基金supported by the National High Technology Research and Development Program of China (2009AA02Z407)the National Natural Science Foundation of China (30970707)
文摘As an important branch of biomedical engineering, respiratory mechanics helps to understand the physiology of the respiratory system and provides fundamental data for developing such clinical technologies as ventilators. To solve different clinical problems, researchers have developed numerous models at various scales that describe biological and mechanical properties of the respiratory system. During the past decade, benefiting from the continuous accumulation of clinical data and the dramatic progress of biomedical technologies (e.g. biomedical imaging), the theoretical modeling of respiratory mechanics has made remarkable progress regarding the macroscopic properties of the respiratory process, complexities of the respiratory system, gas exchange within the lungs, and the coupling interaction between lung and heart. The present paper reviews the advances in the above fields and proposes potential future projects.
文摘In the above paper the entropy generation is defined as fol-lows (Eq. (25) in Ref. [1]) In Eq. (1) the parameter RD appears. However, the parameter RD is absent from the dimensional equations in Ref. [1]. It is also absent from the transformed Eqs. (18)–(21) in Ref. [1]. It is also absent from the Nomenclature (Rd is a different parameter named as radiation parameter). This is a serious problem. From the first continuity Eq. (1) until Eq. (24) the parameter RD is absent and appears suddenly in Eq. (25). This is irrational. It is not allowed to use a parameter which is absent from the physical problem.
文摘Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cells, intermediate filament proteins play key roles to reinforce cells subjected to large-deformation, and that they participate in signal transduction, and it was proposed that their nanome- chanical properties are critical to perform those functions. However, it is still poorly understood how the nanoscopic structure, as well as the combination of chemical composition, molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein's structure. A multiple scale method is discussed, used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser method- ology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments, coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.
文摘AIMS AND SCOPEThis journal has two independent editions—one in Chinese and the other in English.The Chinese bimonthly Acta Mechanica Sinica was first published in 1957, while the Englishquarterly, Acta Mechanica Sinica (English Series), was founded in 1985. High quality originalworks on all aspects of the science of mechanics are published in either of the editions. A
文摘The present paper describes the theoretical treatment performed for the geometrical optimization of advanced and improved-shape waveforms as airways pressure excitation for controlled breathings in dual-controlled ventilation applied to anaesthetized or severe brain injured patients, the respiratory mechanics of which can be assumed linear. Advanced means insensitive to patient breathing activity as well as to ventilator settings while improved-shape intends in comparison to conventional square waveform for a progressive approaching towards physiological transpulmonary pressure and respiratory airflow waveforms. Such functional features along with the best ventilation control for the specific therapeutic requirements of each patient can be achieved through the implementation of both diagnostic and compensation procedures effectively carried out by the Advance Lung Ventilation System (ALVS) already successfully tested for square waveform as airways pressure excitation. Triangular and trapezoidal waveforms have been considered as airways pressure excitation. The results shows that the latter fits completely the requirements for a physiological pattern of endoalveolar pressure and respiratory airflow waveforms, while the former exhibits a lower physiological behaviour but it is anyhow periodically recommended for performing adequately the powerful diagnostic procedure.
文摘In order to improve the destruction efficiency of dioxins and also for developing new dioxin control technology, the destruction mechanisms of 2,3,7,8-tetrachlorodihenzo-p-dioxin (2,3,7,8-TCDD) by O3 and NO3, were investigated employing quantum chemical calculations. For involved reactions, the microcosmic reaction processes were analyzed and depicted in detail based on geometry optimizations made by the B3LYP/6-31G(d) method. At the same time, the reaction activation energies were also calculated at the MP2/6- 311G(d,p)//B3LYP/6-31G(d) level. Configuration analysis indicated that 2,3,7,8-TCDD could be destroyed by 03 and NO3 in two different ways. The destruction of 2,3,7,8-TCDD by 03 proceeded via the addition of 03 and the cleavage of C=C while the destruction of 2,3,7,8-TCDD by NO3 proceeded via the substitution of chlorine by NO3. Calculated results show that, the activation energy of the destruction reaction of 2,3,7,8-TCDD by NO3 (267.48 kJ/mol) is much larger than that of the destruction reaction of 2,3,7,8-TCDD by O3 (51.20 kJ/mol). This indicated that the destruction of 2,3,7,8-TCDD by 03 is much more efficient than that of 2,3,7,8-TCDD by NO3. The reason why the activation energy for the destruction reaction of 2,3,7,8-TCDD by NO3 is so large, is also discussed.
文摘The gas phase hydration of glyoxal (HCOCHO) in the presence of sulfuric acid (H2SO4) were studied by the high-level quantum chemical calculations with M06-2X and CCSD(T) theoretical methods and the conventional transition state theory (CTST). The mechanism and rate constant of the five different reaction paths are consid- ered corresponding to HCOCHO+H2O, HCOCHO+H2O… H2O, HCOCHO… H2O+H2O, HCOCHO+H2O… H2SO4 and HCOCHO… H2O+H2SOa. Results show that H2SO4 has a strong catalytic ability, which can significantly reduce the energy barrier for the hydration reaction of glyoxal. The energy barrier of hydrolysis of glyoxal in gas phase is lowered to 7.08 kcal/mol from 37.15 kcal/mol relative to pre-reactive complexes at the CCSD(T)/6- 311++G(3df, 3pd)//M06-2X/6-311++G(3df, 3pd) level of theory. The rate constant of the H2SO4 catalyzed hydrolysis of glyoxal is 1.34×10-11 cm3/(molecule.s), about 1013 higher than that involving catalysis by an equal number of water molecules, and is greater than the reaction rate of glyoxal reaction with OH radicals of 1.10×10-11 cm3/(molecule·s) at the room temperature, indicating that the gas phase hydrolysis of glyoxal of H2SO4 catalyst is feasible and could compete with the reaction glyoxal+OH under certain atmospheric condi- tions. This study may provide useful information on understanding the mechanistic features of inorganic acid-catalyzed hydration of glyoxal for the formation of oligomer.
文摘The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
基金Supported by the Natural Science Foundation of Hainan Province(No. 60505) and the Doctoral Research Fund of Hainan Nor-mal University.
文摘The reaction mechanisms of HNCS with NH(X^3∑ ) were theoretically investigated. The minimum energy paths (MEP) of the reaction were calculated by using the density functional theory(DFT) at the B3LYP/6-311 + + G^** level. The equilibrium structural parameters, the harmonic vibrational frequencies, the total energies, and the zeropoint energies(ZPE) of all the species were calculated. The single-point energies along the MEP were further refined at the QCISD(T)/6-311 + + G^* * level. It was found that the mechanisms of the HNCS + NH(X^3∑) reaction involve two channels producing the HNC + HNS and the N2H2 + CS products. Channel 1 plays a dominant role and the HNC + HNS are the main preduets. The reaction is exothermie.
基金supported by the Key Program of the National Natural Science Foundation of China(30930074)
文摘The reaction mechanisms of phenol with formaldehyde in the first and second addition at the ortho- and para-position in acid solution were theoretically investigated at the PW91/DNP level with solvent effects included. The reaction of phenol with protonated methanediol firstly forms an adduct intermediate, via a SN2 mechanism with a water molecule as the leaving group. From the adduct intermediate, there are two reaction channels involving a proton transfer to form the addition products. One is that a proton directly transfers via a four-membered ring transition state with a notable energy barrier (Four-member mechanism). Another mechanism involving a water molecule as catalyst to mediate the proton transfer (WCP mechanism), is a barrierless process, indicating that the formation of the adduct intermediate, the first reaction step, is rate-limiting. The reaction products are free hydroxymethyl phenols and/or hydroxybenzy carbocation (HOC6H4CH2+) which plays an important role in the following formation of methylene and methylene ether linkages. The second addition reactions between formaldehyde and hydroxymethyl phenol at all possible reaction sites of the phenol ring in acid solution were also investigated and discussed.
基金Supported by the Youth Science Foundation of Shanxi Province under Grant No 2013021010-3the National Natural Science Foundation of China under Grant Nos 61434002 and 11404202
文摘Effect of mechanical stress on magnetic properties of an exchange-biased ferromagnetic/antiferromagnetic bilayer deposited on a flexible substrate is investigated. The hysteresis loops with different magnitudes and orientations of the stress can be classified into three types. The corresponding physical conditions for each type of the loop are deduced based on the principle of minimal energy. The equation of the critical stress is derived, which can judge whether the loops show hysteresis or not. Numerical calculations suggest that except for the magnitude of the mechanical stress, the relative orientation of the stress is also an important factor to tune the exchange bias effect.