High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep le...The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.展开更多
The current advancement in cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT)transformed the traditional healthcare system into smart healthcare.Healthcare services could be enhanced by incorp...The current advancement in cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT)transformed the traditional healthcare system into smart healthcare.Healthcare services could be enhanced by incorporating key techniques like AI and IoT.The convergence of AI and IoT provides distinct opportunities in the medical field.Fall is regarded as a primary cause of death or post-traumatic complication for the ageing population.Therefore,earlier detection of older person falls in smart homes is required to improve the survival rate of an individual or provide the necessary support.Lately,the emergence of IoT,AI,smartphones,wearables,and so on making it possible to design fall detection(FD)systems for smart home care.This article introduces a new Teamwork Optimization with Deep Learning based Fall Detection for IoT Enabled Smart Healthcare Systems(TWODLFDSHS).The TWODL-FDSHS technique’s goal is to detect fall events for a smart healthcare system.Initially,the presented TWODL-FDSHS technique exploits IoT devices for the data collection process.Next,the TWODLFDSHS technique applies the TWO with Capsule Network(CapsNet)model for feature extraction.At last,a deep random vector functional link network(DRVFLN)with an Adam optimizer is exploited for fall event detection.A wide range of simulations took place to exhibit the enhanced performance of the presentedTWODL-FDSHS technique.The experimental outcomes stated the enhancements of the TWODL-FDSHS method over other models with increased accuracy of 98.30%on the URFD dataset.展开更多
Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the le...Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm.展开更多
Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distributi...Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distribution of laminated shale with great vertical heterogeneity.To solve this problem,taking Chang 73 sub-member in Yanchang Formation of Ordos Basin as an example,an idea of predicting lamina combinations by combining'conventional log data-mineral composition prediction-lamina combination type identification'has been worked out based on machine learning under supervision on the premise of adequate knowledge of characteristics of lamina mineral components.First,the main mineral components of the work area were figured out by analyzing core data,and the log data sensitive to changes of the mineral components was extracted;then machine learning was used to construct the mapping relationship between the two;based on the variations in mineral composition,the lamina combination types in typical wells of the research area were identified to verify the method.The results show the approach of'conventional log data-mineral composition prediction-lamina combination type identification'works well in identifying the types of shale lamina combinations.The approach was applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution characteristics of the laminae.展开更多
Group work learning is one of the hot topics in English learning and teaching today. This discourse will probe the meaning and the advantages of group work learning, as well as its implementation. Also, the discourse ...Group work learning is one of the hot topics in English learning and teaching today. This discourse will probe the meaning and the advantages of group work learning, as well as its implementation. Also, the discourse discusses the proper time for group work learning. In addition to that, problems of group work learning are enclosed.展开更多
BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve function...BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump...In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.展开更多
The reccnt Alcatel Lucent failure is an example of how many mergers run into considerable implementing difficulties in the months following their launch. Despite promising perspectives,no coherent whole seems to come ...The reccnt Alcatel Lucent failure is an example of how many mergers run into considerable implementing difficulties in the months following their launch. Despite promising perspectives,no coherent whole seems to come out of the merger,just as anticipated synergies have a hard time materializing.展开更多
The purpose of this study is to explore the effects of working fluid on conventional combined cycle integrated with pressurized solid oxide fuel cell (SOFC) and waste heat recovery organic Rankine cycle (ORC) for stat...The purpose of this study is to explore the effects of working fluid on conventional combined cycle integrated with pressurized solid oxide fuel cell (SOFC) and waste heat recovery organic Rankine cycle (ORC) for stationary utility power generation. The mathematical model of a natural gas fueled design configuration is developed in Matlab and Simulink and simulated with 14 working fluids. The effluent gases of SOFC undergo combustion in the combustion chamber and it is utilized in the gas turbine, steam turbine cycle and ORC. The model is compared with those found in literature and the parametric studies of temperature, flow rate, fuel utilization factor and exhaust gas on the system efficiency are examined. Results revealed that working fluids show a closely related behavior in efficiency at low pressure ratio and high flow fraction, fuel utilization, and temperature. R-123 was found to perform the best among 14 working fluids studied, yielding a system energy efficiency of 70% in the combined cycle integrated with SOFC and ORC.展开更多
Video object tracking is an important research topic of computer vision, whichfinds a wide range of applications in video surveillance, robotics, human-computerinteraction and so on. Although many moving object tracki...Video object tracking is an important research topic of computer vision, whichfinds a wide range of applications in video surveillance, robotics, human-computerinteraction and so on. Although many moving object tracking algorithms have beenproposed, there are still many difficulties in the actual tracking process, such asillumination change, occlusion, motion blurring, scale change, self-change and so on.Therefore, the development of object tracking technology is still challenging. Theemergence of deep learning theory and method provides a new opportunity for theresearch of object tracking, and it is also the main theoretical framework for the researchof moving object tracking algorithm in this paper. In this paper, the existing deeptracking-based target tracking algorithms are classified and sorted out. Based on theprevious knowledge and my own understanding, several solutions are proposed for theexisting methods. In addition, the existing deep learning target tracking method is stilldifficult to meet the requirements of real-time, how to design the network and trackingprocess to achieve speed and effect improvement, there is still a lot of research space.展开更多
Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ense...Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.展开更多
The current research was grounded in prior interdisciplinary research that showed cognitive ability (verbal ability for translating cognitions into oral language) and multiple-working memory endophenotypes (behavioral...The current research was grounded in prior interdisciplinary research that showed cognitive ability (verbal ability for translating cognitions into oral language) and multiple-working memory endophenotypes (behavioral markers of genetic or brain bases of language learning) predict reading and writing achievement in students with and without specific learning disabilities in written language (SLDs-WL). Results largely replicated prior findings that verbally gifted with dyslexia score higher on reading and writing achievement than those with average verbal ability but not on endophenotypes. The current study extended that research by comparing those with and without SLDs-WL with assessed verbal ability held constant. The verbally gifted without SLDs-WL (n = 14) scored higher than the verbally gifted with SLDs-WL (n = 27) on six language skills (oral sentence construction, best and fastest handwriting in copying, single real word oral reading accuracy, oral pseudoword reading accuracy and rate) and four endophenotypes (orthographic and morphological coding, orthographic loop, and switching attention). The verbally average without SLDs-WL (n = 6) scored higher than the verbally average with SLDs-WL (n = 22) on four language skills (best and fastest hand-writing in copying, oral pseudoword reading accuracy and rate) and two endophenotypes (orthographic coding and orthographic loop). Implications of results for translating interdisciplinary research into flexible definitions for assessment and instruction to serve students with varying verbal abilities and language learning and endophenotype profiles are discussed along with directions for future research.展开更多
It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively foc...It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.展开更多
The estimation of potato biomass and yield can optimize the planting pattern and tap the production potential.Based on partial least square(PLSR),multiple linear regression(MLR),support vector machine(SVM),random fore...The estimation of potato biomass and yield can optimize the planting pattern and tap the production potential.Based on partial least square(PLSR),multiple linear regression(MLR),support vector machine(SVM),random forest(RF),BP neural network and other machine learning algorithms,the biomass estimation model of potato in different growth stages is constructed by using single variables such as original spectrum,first-order differential spectrum,combined spectrum index and vegetation index(VI)and their coupled combination variables.The accuracy of the models is compared and analyzed,and the best modeling method of biomass in different growth stages is selected.Based on the optimized modeling method,the biomass of each growth stage is estimated,and the yield estimation model of different growth stages is constructed based on the estimation results and the linear regression analysis method,and the accuracy of the model is verified.The results showed that in tuber formation stage,starch accumulation stage and maturity stage,the biomass estimation accuracy based on combination variable was the highest,the best modeling method was MLR and SVM,in tuber growth stage,the best modeling method was MLR,the effect of yield estimation is good.It provides a reference for the algorithm selection of crop biomass and yield models based on machine learning.展开更多
The flowering forecast provides recommendations for orchard cleaning, pest control, field management and fertilization, which can help increase tree vigor and resistance. Flowering forecast is not only an important pa...The flowering forecast provides recommendations for orchard cleaning, pest control, field management and fertilization, which can help increase tree vigor and resistance. Flowering forecast is not only an important part of the construction of agro-meteorological index system, but also an important part of the meteorological service system. In this paper, by analyzing local meteorological data and phenological data of “Red Fuji” apples in Fen County, Linfen City, Shanxi Province, with the help of machine learning and neural networks, we proposed a method based on the combination of time series forecasting and classification forecasting is proposed to complete the dynamic forecasting model of local flowering in Ji County. Then, we evaluated the effectiveness of the model based on the number of error days and the number of days in advance. The implementation shows that the proposed multivariable LSTM network has a good effect on the prediction of meteorological factors. The model loss is less than 0.2. In the two-category task of flowering judgment, the idea of combining strategies in ensemble learning improves the effect of flowering judgment, and its AUC value increases from 0.81 and 0.80 of single model RF and AdaBoost to 0.82. The proposed model has high applicability and accuracy for flowering forecast. At the same time, the model solves the problem of rounding decimals in the prediction of flowering dates by the regression method.展开更多
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported in part by the National Natural Science Foundation of China under Grant U1908212,62203432 and 92067205in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03 and 2023-Z15in part by the Natural Science Foundation of Liaoning Province under Grant 2020-KF-11-02.
文摘The accurate and intelligent identification of the working conditions of a sucker-rod pumping system is necessary. As onshore oil extraction gradually enters its mid-to late-stage, the cost required to train a deep learning working condition recognition model for pumping wells by obtaining enough new working condition samples is expensive. For the few-shot problem and large calculation issues of new working conditions of oil wells, a working condition recognition method for pumping unit wells based on a 4-dimensional time-frequency signature (4D-TFS) and meta-learning convolutional shrinkage neural network (ML-CSNN) is proposed. First, the measured pumping unit well workup data are converted into 4D-TFS data, and the initial feature extraction task is performed while compressing the data. Subsequently, a convolutional shrinkage neural network (CSNN) with a specific structure that can ablate low-frequency features is designed to extract working conditions features. Finally, a meta-learning fine-tuning framework for learning the network parameters that are susceptible to task changes is merged into the CSNN to solve the few-shot issue. The results of the experiments demonstrate that the trained ML-CSNN has good recognition accuracy and generalization ability for few-shot working condition recognition. More specifically, in the case of lower computational complexity, only few-shot samples are needed to fine-tune the network parameters, and the model can be quickly adapted to new classes of well conditions.
基金The Deanship of Scientific Research (DSR)at King Abdulaziz University (KAU),Jeddah,Saudi Arabia has funded this project,under grant no.KEP-4-120-42.
文摘The current advancement in cloud computing,Artificial Intelligence(AI),and the Internet of Things(IoT)transformed the traditional healthcare system into smart healthcare.Healthcare services could be enhanced by incorporating key techniques like AI and IoT.The convergence of AI and IoT provides distinct opportunities in the medical field.Fall is regarded as a primary cause of death or post-traumatic complication for the ageing population.Therefore,earlier detection of older person falls in smart homes is required to improve the survival rate of an individual or provide the necessary support.Lately,the emergence of IoT,AI,smartphones,wearables,and so on making it possible to design fall detection(FD)systems for smart home care.This article introduces a new Teamwork Optimization with Deep Learning based Fall Detection for IoT Enabled Smart Healthcare Systems(TWODLFDSHS).The TWODL-FDSHS technique’s goal is to detect fall events for a smart healthcare system.Initially,the presented TWODL-FDSHS technique exploits IoT devices for the data collection process.Next,the TWODLFDSHS technique applies the TWO with Capsule Network(CapsNet)model for feature extraction.At last,a deep random vector functional link network(DRVFLN)with an Adam optimizer is exploited for fall event detection.A wide range of simulations took place to exhibit the enhanced performance of the presentedTWODL-FDSHS technique.The experimental outcomes stated the enhancements of the TWODL-FDSHS method over other models with increased accuracy of 98.30%on the URFD dataset.
文摘Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm.
基金co-supported by the National Natural Science Foundation of China(Grant Nos.U1762217,42072161)。
文摘Organic rich laminated shale is one type of favorable reservoirs for exploration and development of continental shale oil in China.However,with limited geological data,it is difficult to predict the spatial distribution of laminated shale with great vertical heterogeneity.To solve this problem,taking Chang 73 sub-member in Yanchang Formation of Ordos Basin as an example,an idea of predicting lamina combinations by combining'conventional log data-mineral composition prediction-lamina combination type identification'has been worked out based on machine learning under supervision on the premise of adequate knowledge of characteristics of lamina mineral components.First,the main mineral components of the work area were figured out by analyzing core data,and the log data sensitive to changes of the mineral components was extracted;then machine learning was used to construct the mapping relationship between the two;based on the variations in mineral composition,the lamina combination types in typical wells of the research area were identified to verify the method.The results show the approach of'conventional log data-mineral composition prediction-lamina combination type identification'works well in identifying the types of shale lamina combinations.The approach was applied to Chang 73 sub-member in Yanchang Formation of Ordos Basin to find out planar distribution characteristics of the laminae.
文摘Group work learning is one of the hot topics in English learning and teaching today. This discourse will probe the meaning and the advantages of group work learning, as well as its implementation. Also, the discourse discusses the proper time for group work learning. In addition to that, problems of group work learning are enclosed.
文摘BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
文摘In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.
文摘The reccnt Alcatel Lucent failure is an example of how many mergers run into considerable implementing difficulties in the months following their launch. Despite promising perspectives,no coherent whole seems to come out of the merger,just as anticipated synergies have a hard time materializing.
文摘The purpose of this study is to explore the effects of working fluid on conventional combined cycle integrated with pressurized solid oxide fuel cell (SOFC) and waste heat recovery organic Rankine cycle (ORC) for stationary utility power generation. The mathematical model of a natural gas fueled design configuration is developed in Matlab and Simulink and simulated with 14 working fluids. The effluent gases of SOFC undergo combustion in the combustion chamber and it is utilized in the gas turbine, steam turbine cycle and ORC. The model is compared with those found in literature and the parametric studies of temperature, flow rate, fuel utilization factor and exhaust gas on the system efficiency are examined. Results revealed that working fluids show a closely related behavior in efficiency at low pressure ratio and high flow fraction, fuel utilization, and temperature. R-123 was found to perform the best among 14 working fluids studied, yielding a system energy efficiency of 70% in the combined cycle integrated with SOFC and ORC.
基金supported by National Natural Science Foundationof China (Grant No. 51874300)the National Natural Science Foundation of China andShanxi Provincial People’s Government Jointly Funded Project of China for Coal Baseand Low Carbon (Grant No. U1510115)+2 种基金National Natural Science Foundation of China(51104157)the Qing Lan Project, the China Postdoctoral Science Foundation (Grant No.2013T60574)the Scientific Instrument Developing Project of the Chinese Academy ofSciences (Grant No. YJKYYQ20170074).
文摘Video object tracking is an important research topic of computer vision, whichfinds a wide range of applications in video surveillance, robotics, human-computerinteraction and so on. Although many moving object tracking algorithms have beenproposed, there are still many difficulties in the actual tracking process, such asillumination change, occlusion, motion blurring, scale change, self-change and so on.Therefore, the development of object tracking technology is still challenging. Theemergence of deep learning theory and method provides a new opportunity for theresearch of object tracking, and it is also the main theoretical framework for the researchof moving object tracking algorithm in this paper. In this paper, the existing deeptracking-based target tracking algorithms are classified and sorted out. Based on theprevious knowledge and my own understanding, several solutions are proposed for theexisting methods. In addition, the existing deep learning target tracking method is stilldifficult to meet the requirements of real-time, how to design the network and trackingprocess to achieve speed and effect improvement, there is still a lot of research space.
基金supported by China Postdoctoral Science Foundation(2015M582355)the Doctor Scientific Research Start Project from Hubei University of Science and Technology(BK1418)National Natural Science Foundation of China(61271256)
基金the Natural Science Foundation of Shaan’xi Province (2005F51).
文摘Because most ensemble learning algorithms use the centralized model, and the training instances must be centralized on a single station, it is difficult to centralize the training data on a station. A distributed ensemble learning algorithm is proposed which has two kinds of weight genes of instances that denote the global distribution and the local distribution. Instead of the repeated sampling method in the standard ensemble learning, non-balance sampling from each station is used to train the base classifier set of each station. The concept of the effective nearby region for local integration classifier is proposed, and is used for the dynamic integration method of multiple classifiers in distributed environment. The experiments show that the ensemble learning algorithm in distributed environment proposed could reduce the time of training the base classifiers effectively, and ensure the classify performance is as same as the centralized learning method.
文摘The current research was grounded in prior interdisciplinary research that showed cognitive ability (verbal ability for translating cognitions into oral language) and multiple-working memory endophenotypes (behavioral markers of genetic or brain bases of language learning) predict reading and writing achievement in students with and without specific learning disabilities in written language (SLDs-WL). Results largely replicated prior findings that verbally gifted with dyslexia score higher on reading and writing achievement than those with average verbal ability but not on endophenotypes. The current study extended that research by comparing those with and without SLDs-WL with assessed verbal ability held constant. The verbally gifted without SLDs-WL (n = 14) scored higher than the verbally gifted with SLDs-WL (n = 27) on six language skills (oral sentence construction, best and fastest handwriting in copying, single real word oral reading accuracy, oral pseudoword reading accuracy and rate) and four endophenotypes (orthographic and morphological coding, orthographic loop, and switching attention). The verbally average without SLDs-WL (n = 6) scored higher than the verbally average with SLDs-WL (n = 22) on four language skills (best and fastest hand-writing in copying, oral pseudoword reading accuracy and rate) and two endophenotypes (orthographic coding and orthographic loop). Implications of results for translating interdisciplinary research into flexible definitions for assessment and instruction to serve students with varying verbal abilities and language learning and endophenotype profiles are discussed along with directions for future research.
基金Funded by the Excellent Young Teachers of MOE (350) and Chongqing Education Committee Foundation
文摘It has been shown in recent economic and statistical studies that combining forecasts may produce more accurate forecasts than individual ones. However, the literature on combining forecasts has almost exclusively focused on linear combining forecasts. In this paper, a new nonlinear combination forecasting method based on fuzzy inference system is present to overcome the difficulties and drawbacks in linear combination modeling of non-stationary time series. Furthermore, the optimization algorithm based on a hierarchical structure of learning automata is used to identify the parameters of the fuzzy system. Experiment results related to numerical examples demonstrate that the new technique has excellent identification performances and forecasting accuracy superior to other existing linear combining forecasts.
基金This study was supported by the Natural Science Foundation of China(41871333)the Important Project of Science and Technology of the Henan Province(182102110186)Thanks go to Haikuan Feng for the image data and field sampling collection.
文摘The estimation of potato biomass and yield can optimize the planting pattern and tap the production potential.Based on partial least square(PLSR),multiple linear regression(MLR),support vector machine(SVM),random forest(RF),BP neural network and other machine learning algorithms,the biomass estimation model of potato in different growth stages is constructed by using single variables such as original spectrum,first-order differential spectrum,combined spectrum index and vegetation index(VI)and their coupled combination variables.The accuracy of the models is compared and analyzed,and the best modeling method of biomass in different growth stages is selected.Based on the optimized modeling method,the biomass of each growth stage is estimated,and the yield estimation model of different growth stages is constructed based on the estimation results and the linear regression analysis method,and the accuracy of the model is verified.The results showed that in tuber formation stage,starch accumulation stage and maturity stage,the biomass estimation accuracy based on combination variable was the highest,the best modeling method was MLR and SVM,in tuber growth stage,the best modeling method was MLR,the effect of yield estimation is good.It provides a reference for the algorithm selection of crop biomass and yield models based on machine learning.
文摘The flowering forecast provides recommendations for orchard cleaning, pest control, field management and fertilization, which can help increase tree vigor and resistance. Flowering forecast is not only an important part of the construction of agro-meteorological index system, but also an important part of the meteorological service system. In this paper, by analyzing local meteorological data and phenological data of “Red Fuji” apples in Fen County, Linfen City, Shanxi Province, with the help of machine learning and neural networks, we proposed a method based on the combination of time series forecasting and classification forecasting is proposed to complete the dynamic forecasting model of local flowering in Ji County. Then, we evaluated the effectiveness of the model based on the number of error days and the number of days in advance. The implementation shows that the proposed multivariable LSTM network has a good effect on the prediction of meteorological factors. The model loss is less than 0.2. In the two-category task of flowering judgment, the idea of combining strategies in ensemble learning improves the effect of flowering judgment, and its AUC value increases from 0.81 and 0.80 of single model RF and AdaBoost to 0.82. The proposed model has high applicability and accuracy for flowering forecast. At the same time, the model solves the problem of rounding decimals in the prediction of flowering dates by the regression method.