According to the initial vision of "digital earth" (DE), the public should constitute a significant proportion of its users. However, to date, most of the studies and applications have focused on science, the priv...According to the initial vision of "digital earth" (DE), the public should constitute a significant proportion of its users. However, to date, most of the studies and applications have focused on science, the private sec- tor and government. A DE-supported online oceanic educational public service and popularization system, iOcean, is studied. First, the vision for the public's engagement with "digital ocean" is described: an analysis is presented from four aspects, i.e., the space dimension, the time dimension, the state dimension and its relationship with human beings. Second, the technical framework of iOcean is discussed, including data updating and model computing, the data, the function, and the application layers. Third, two key technolo- gies are studied in detail that will enable the construction of iOcean. More than half a million public viewers have used the current version's website. Practical demonstrations show that iOcean can bring virtual oceans to web browsers and desktops and construct a bridge between government departments and the general public.展开更多
Currently, the integrated biomechanical studies on fish locomotion come into focus, so it is urgent to provide reliable and sys- tematic experimental results, and to establish a biomechanical "digital fish" database...Currently, the integrated biomechanical studies on fish locomotion come into focus, so it is urgent to provide reliable and sys- tematic experimental results, and to establish a biomechanical "digital fish" database for some typical fish species. Accord- ingly, based on the control framework of "Neural Control - Active Contraction of Muscle - Passive Deformation", the elec- tromyography (EMG) signals, the mechanical properties and the constitutive relationship of skin, muscle, and body trunk, as well as morphological parameters of crucian carp, are investigated with experiments, from which a simplified database of bio- mechanical "digital fish" is established. First, the EMG signals from three lateral superficial red muscles of crucian carp, which was evolving in the C-start movement, were acquired with a self-designing amplifier. The modes of muscle activity were also investigated. Secondly, the Young's modulus and the reduced relaxation function of crucian carp's skin and muscle were de- termined by failure tests and relaxation tests in uniaxial tensile ways, respectively. Viscoelastic models were adopted to deduce the constitutive relationship. The mechanical properties and the angular stiffness of different sites on the crucian carp's body trunk were obtained with dynamic bending experiments, where a self-designing dynamic bending test machine was employed. The conclusion was drawn regarding the body trunk of crucian carp under dynamic bending deformation as an approximate elastomer. According to the above experimental results, a possible benefit of body effective stiffness increasing with a little energy dissipation was discussed. Thirdly, the distribution of geometric parameters and weight parameters for a single experi- mental individual and multiple individuals of crucian carp was studied with experiments. Finally, considering all the above re- suits, generic experimental data were obtained by normalization, and a preliminary biomechanical "digital fish" database for crucian carp was established.展开更多
基金The National Natural Science Foundation of China under contract No.61074132the 908 Project of the State Oceanic Administration,China under contract No.908-03-03-02the Special Research Project for the Commonweal of the Ministry of Weater Resources of China under contract No.201201092
文摘According to the initial vision of "digital earth" (DE), the public should constitute a significant proportion of its users. However, to date, most of the studies and applications have focused on science, the private sec- tor and government. A DE-supported online oceanic educational public service and popularization system, iOcean, is studied. First, the vision for the public's engagement with "digital ocean" is described: an analysis is presented from four aspects, i.e., the space dimension, the time dimension, the state dimension and its relationship with human beings. Second, the technical framework of iOcean is discussed, including data updating and model computing, the data, the function, and the application layers. Third, two key technolo- gies are studied in detail that will enable the construction of iOcean. More than half a million public viewers have used the current version's website. Practical demonstrations show that iOcean can bring virtual oceans to web browsers and desktops and construct a bridge between government departments and the general public.
基金supported by the National Natural Science Foundation of China (Grant No. 10832010)the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L05)
文摘Currently, the integrated biomechanical studies on fish locomotion come into focus, so it is urgent to provide reliable and sys- tematic experimental results, and to establish a biomechanical "digital fish" database for some typical fish species. Accord- ingly, based on the control framework of "Neural Control - Active Contraction of Muscle - Passive Deformation", the elec- tromyography (EMG) signals, the mechanical properties and the constitutive relationship of skin, muscle, and body trunk, as well as morphological parameters of crucian carp, are investigated with experiments, from which a simplified database of bio- mechanical "digital fish" is established. First, the EMG signals from three lateral superficial red muscles of crucian carp, which was evolving in the C-start movement, were acquired with a self-designing amplifier. The modes of muscle activity were also investigated. Secondly, the Young's modulus and the reduced relaxation function of crucian carp's skin and muscle were de- termined by failure tests and relaxation tests in uniaxial tensile ways, respectively. Viscoelastic models were adopted to deduce the constitutive relationship. The mechanical properties and the angular stiffness of different sites on the crucian carp's body trunk were obtained with dynamic bending experiments, where a self-designing dynamic bending test machine was employed. The conclusion was drawn regarding the body trunk of crucian carp under dynamic bending deformation as an approximate elastomer. According to the above experimental results, a possible benefit of body effective stiffness increasing with a little energy dissipation was discussed. Thirdly, the distribution of geometric parameters and weight parameters for a single experi- mental individual and multiple individuals of crucian carp was studied with experiments. Finally, considering all the above re- suits, generic experimental data were obtained by normalization, and a preliminary biomechanical "digital fish" database for crucian carp was established.