A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) ...A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) how a subsequent 2-1 mapping (projection) of P16 onto a 8D-hyperplane might furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and such that one can capture the chain sequence of polytopes 241,231,221,211in D=8,7,6,5dimensions, leading, respectively, to the sequence of Coxeter groups E8,E7,E6,SO(10)which are putative GUT group candidates. An embedding of the E8⊕E8and E8⊕E8⊕E8lattice into the Barnes-Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From the 16D lattice E8⊕E8one can generate two separate families of Elser-Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-and-project” method from 8D to 4D in each separate E8 lattice. Therefore, one obtains in this fashion the Cartesian product of two Elser-Sloane QC’s Q×Qspanning an 8D space. Similarly, from the 24D lattice E8⊕E8⊕E8one can generate the Cartesian product of three Elser-Sloane 4D quasicrystals (QC’s) Q×Q×Qwith H4 symmetry and spanning a 12D space.展开更多
This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different price...This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.展开更多
Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from ...Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from one or more sensors. Because of the problem that standard ball is deficient as a standard artifact in the coordinate unification of high-precision composite measurement in two dimensions (2D) , a new method is proposed in this paper which uses angle gauge blocks as standard artifacts to achieve coordinate unification between the image sensor and the tactile probe. By comparing the standard ball with the angle gauge block as a standard artifact, theoretical analysis and experimental results are given to prove that it is more precise and more convenient to use angle gauge blocks as standard artifacts to achieve coordinate unification of high-precision composite measurement in two dimensions.展开更多
True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should ...True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should be taken into account dur-ing the design process, since some visual conflicts appear when map symbols overlaid on the true color image. The objective of this research is to explore the rules in the process of true color image city map design based on chromatic and aesthetic knowledge. At the end, taking the Image Atlas of Guangzhou as an example, image color adjustment, road network presentation, and symbol de-signing issues will be discussed in the application.展开更多
Reinforced concrete structural elements with box section are commonly used in the horizontal and vertical structure of bridges. The reinforced concrete structure in bridge often failed under the combined forces of ben...Reinforced concrete structural elements with box section are commonly used in the horizontal and vertical structure of bridges. The reinforced concrete structure in bridge often failed under the combined forces of bending, axial load, shear and torsion caused by wind and earthquake. It is very important to study the mechanism of RC box section structures subjected to a combi-nation of forces. A theoretical study and deduction of the unified expression for failure of reinforced concrete members with box section under combined bending, shear, axial force and torsion were carried out with stress equilibrium assumption. Comparison of theoretical analysis results with experimental results showed that the unified expression for failure of reinforced concrete members with box section can be used for static calculation of such structure members.展开更多
A new method for the unification of gravitational and electromagnetic forces is proposed. Previously, Kaluza-Klein theory dealt with the unification, but it has not yet been established as a complete theory. The main ...A new method for the unification of gravitational and electromagnetic forces is proposed. Previously, Kaluza-Klein theory dealt with the unification, but it has not yet been established as a complete theory. The main reason for this is that Kaluza-Klein theory has various contradictions due to the use of a 5-dimensional metric tensor. In this paper, unlike the conventional method, various equations related to gravitational and electromagnetic force are derived without any contradiction by processing equations having gauge symmetry within a 4-dimensional range. In this process, we propose that Maxwell’s equations for the electromagnetic force are expressed more simply and implicitly than the existing tensor form. Using the gauge symmetry, it shows that electromagnetic force can exist in single metric tensor along with gravity. In addition, since geodesic equations can be derived in the form of coordinate transformation, it has been shown that they are consistent with the existing equations. As a result, it has shown that they are consistent with the existing physical equations without contradiction.展开更多
This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klei...This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klein theory’s unification of the gravitational and electromagnetic fields. The unification of gravitational and electromagnetic fields in curved space-time starts from the Bianchi identity, which is well known as a mathematical generalization of the gravitational equation, and by using the existing gauge symmetry condition, equations for the gravitational and electromagnetic fields can be obtained. In particular, the homogeneous Maxwell’s equation can be obtained from the first Bianchi identity, and the inhomogeneous Maxwell’s equation can be obtained from the second Bianchi identity by using Killing’s equation condition of the curved space-time. This paper demonstrates that gravitational and electromagnetic fields can be derived from one equation without contradiction even in curved space-time, thus proving that the 4-dimensional metric tensor using the gauge used for this unification is more complete. In addition, geodesic equations can also be derived in the form of coordinate transformation, showing that they are consistent with the existing equations, and as a result, they are consistent with the existing physical equations.展开更多
An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum...An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA;on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.展开更多
Using recently observed data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the measurement results of baryon acoustic oscillation (BAO) from the Sloan Digital Sky ...Using recently observed data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the measurement results of baryon acoustic oscillation (BAO) from the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy Redshift Survey (2dFGRS), and the current cosmic microwave background (CMB) data from the five-year Wilkinson Microwave Anisotropy Probe (WMAP), we apply the Markov Chain Monte Carlo method to investigate the observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. For this unified model, the constraints on GCG mixture are discussed by considering the different expressions of current matter density or considering constraints as being independent of the matter quantity Ωm.展开更多
This work derives a unified description of a solution-particle using movement rate of component vibrations (strings). Projected Pharmacokinetic and Pharmacodynamic data from a patient on Efavirenz are used. Differenti...This work derives a unified description of a solution-particle using movement rate of component vibrations (strings). Projected Pharmacokinetic and Pharmacodynamic data from a patient on Efavirenz are used. Differential equations are used to formulate a system that governs a solution-particle field. A reconnaissance (frame) wave that envelops a solution-particle is derived. Its conductivity and diffusivity fluxes are found. The movement of the reconnaissance wave is found to be faster than diffusion and pilot waves. A solution-particle is accompanied by the three waves, diffusion, pilot and the frame and is active only at the boundary of space and time.展开更多
We introduce the sequence of spontaneous symmetry breaking of a coupling between Pati-Salam and electroweak symmetries SU( 4 )PS × SU( 4 )EW in order to establish a mathematically consistent relation among th...We introduce the sequence of spontaneous symmetry breaking of a coupling between Pati-Salam and electroweak symmetries SU( 4 )PS × SU( 4 )EW in order to establish a mathematically consistent relation among the coupling constants at grand unification energy scale. With the values of baryon minus lepton quantum numbers of known quarks and leptons, by including right-handed neutrinos, we can lind the mixing angle relations at different energy levels up to the electromagnetic U(1)EM scale.展开更多
This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“sp...This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“space-time”) with and without matter embedded. They are useful for having a mental picture of space-time relationships without having to picture 4-dimensional manifolds, which very few students and scientists are able to do. With the aid of the optical lensing definition of curvature as inverse radius, a new gravitational force equation is derived, which also incorporates Einstein’s mass/energy relation in the <em>m</em><sub><em>x</em></sub> term. Thus, one may see how it is that gravitational force correlates with its time-embedded curvature-squared (<span style="white-space:nowrap;"><em>C</em><sub><em>x</em></sub><sup style="margin-left:-7px;"><em>2</em></sup></span>) space in a more accurate formulation than could be envisioned by Newton. This becomes more apparent in high gamma fields, such as found near a black hole horizon. It is hoped that probability theories, such as quantum field theories in curved space-time, might be adaptable to the general relativity isoframe concept introduced herein.展开更多
文摘A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) how a subsequent 2-1 mapping (projection) of P16 onto a 8D-hyperplane might furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and such that one can capture the chain sequence of polytopes 241,231,221,211in D=8,7,6,5dimensions, leading, respectively, to the sequence of Coxeter groups E8,E7,E6,SO(10)which are putative GUT group candidates. An embedding of the E8⊕E8and E8⊕E8⊕E8lattice into the Barnes-Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From the 16D lattice E8⊕E8one can generate two separate families of Elser-Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-and-project” method from 8D to 4D in each separate E8 lattice. Therefore, one obtains in this fashion the Cartesian product of two Elser-Sloane QC’s Q×Qspanning an 8D space. Similarly, from the 24D lattice E8⊕E8⊕E8one can generate the Cartesian product of three Elser-Sloane 4D quasicrystals (QC’s) Q×Q×Qwith H4 symmetry and spanning a 12D space.
文摘This paper presents a mathematical model for components/parts unification (CPU) policy. This model considers two components/parts that are functionally interchangeable but purchased from suppliers with different prices and quality characteristics. Because of the buyer's quality preference and suppliers' discount rates for bulky purchases, the model assists the procurement manager to determine how best to purchase the components/parts to meet its demand while minimizing the total acquisition costs.
基金National Key Scientific Instrument and Equipment Development Project(No.2013YQ170539)
文摘Multi-sensor coordinate unification in dimensional metrology is used in order to get holistic, more accurate and reliable information about a workpiece based on several or multiple measurement values from one or more sensors. Because of the problem that standard ball is deficient as a standard artifact in the coordinate unification of high-precision composite measurement in two dimensions (2D) , a new method is proposed in this paper which uses angle gauge blocks as standard artifacts to achieve coordinate unification between the image sensor and the tactile probe. By comparing the standard ball with the angle gauge block as a standard artifact, theoretical analysis and experimental results are given to prove that it is more precise and more convenient to use angle gauge blocks as standard artifacts to achieve coordinate unification of high-precision composite measurement in two dimensions.
文摘True color image city map is a sort of new-style map which combines the high resolution image and map symbols and shows both advantages in visualization. At the same time, the map unification and harmonization should be taken into account dur-ing the design process, since some visual conflicts appear when map symbols overlaid on the true color image. The objective of this research is to explore the rules in the process of true color image city map design based on chromatic and aesthetic knowledge. At the end, taking the Image Atlas of Guangzhou as an example, image color adjustment, road network presentation, and symbol de-signing issues will be discussed in the application.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB412709), and the National Natural Science Foundation of China (No. 50378054)
文摘Reinforced concrete structural elements with box section are commonly used in the horizontal and vertical structure of bridges. The reinforced concrete structure in bridge often failed under the combined forces of bending, axial load, shear and torsion caused by wind and earthquake. It is very important to study the mechanism of RC box section structures subjected to a combi-nation of forces. A theoretical study and deduction of the unified expression for failure of reinforced concrete members with box section under combined bending, shear, axial force and torsion were carried out with stress equilibrium assumption. Comparison of theoretical analysis results with experimental results showed that the unified expression for failure of reinforced concrete members with box section can be used for static calculation of such structure members.
文摘A new method for the unification of gravitational and electromagnetic forces is proposed. Previously, Kaluza-Klein theory dealt with the unification, but it has not yet been established as a complete theory. The main reason for this is that Kaluza-Klein theory has various contradictions due to the use of a 5-dimensional metric tensor. In this paper, unlike the conventional method, various equations related to gravitational and electromagnetic force are derived without any contradiction by processing equations having gauge symmetry within a 4-dimensional range. In this process, we propose that Maxwell’s equations for the electromagnetic force are expressed more simply and implicitly than the existing tensor form. Using the gauge symmetry, it shows that electromagnetic force can exist in single metric tensor along with gravity. In addition, since geodesic equations can be derived in the form of coordinate transformation, it has been shown that they are consistent with the existing equations. As a result, it has shown that they are consistent with the existing physical equations without contradiction.
文摘This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klein theory’s unification of the gravitational and electromagnetic fields. The unification of gravitational and electromagnetic fields in curved space-time starts from the Bianchi identity, which is well known as a mathematical generalization of the gravitational equation, and by using the existing gauge symmetry condition, equations for the gravitational and electromagnetic fields can be obtained. In particular, the homogeneous Maxwell’s equation can be obtained from the first Bianchi identity, and the inhomogeneous Maxwell’s equation can be obtained from the second Bianchi identity by using Killing’s equation condition of the curved space-time. This paper demonstrates that gravitational and electromagnetic fields can be derived from one equation without contradiction even in curved space-time, thus proving that the 4-dimensional metric tensor using the gauge used for this unification is more complete. In addition, geodesic equations can also be derived in the form of coordinate transformation, showing that they are consistent with the existing equations, and as a result, they are consistent with the existing physical equations.
文摘An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA;on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10875056 and 10703001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20070141034)
文摘Using recently observed data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the measurement results of baryon acoustic oscillation (BAO) from the Sloan Digital Sky Survey (SDSS) and the Two Degree Field Galaxy Redshift Survey (2dFGRS), and the current cosmic microwave background (CMB) data from the five-year Wilkinson Microwave Anisotropy Probe (WMAP), we apply the Markov Chain Monte Carlo method to investigate the observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy. For this unified model, the constraints on GCG mixture are discussed by considering the different expressions of current matter density or considering constraints as being independent of the matter quantity Ωm.
文摘This work derives a unified description of a solution-particle using movement rate of component vibrations (strings). Projected Pharmacokinetic and Pharmacodynamic data from a patient on Efavirenz are used. Differential equations are used to formulate a system that governs a solution-particle field. A reconnaissance (frame) wave that envelops a solution-particle is derived. Its conductivity and diffusivity fluxes are found. The movement of the reconnaissance wave is found to be faster than diffusion and pilot waves. A solution-particle is accompanied by the three waves, diffusion, pilot and the frame and is active only at the boundary of space and time.
文摘We introduce the sequence of spontaneous symmetry breaking of a coupling between Pati-Salam and electroweak symmetries SU( 4 )PS × SU( 4 )EW in order to establish a mathematically consistent relation among the coupling constants at grand unification energy scale. With the values of baryon minus lepton quantum numbers of known quarks and leptons, by including right-handed neutrinos, we can lind the mixing angle relations at different energy levels up to the electromagnetic U(1)EM scale.
文摘This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“space-time”) with and without matter embedded. They are useful for having a mental picture of space-time relationships without having to picture 4-dimensional manifolds, which very few students and scientists are able to do. With the aid of the optical lensing definition of curvature as inverse radius, a new gravitational force equation is derived, which also incorporates Einstein’s mass/energy relation in the <em>m</em><sub><em>x</em></sub> term. Thus, one may see how it is that gravitational force correlates with its time-embedded curvature-squared (<span style="white-space:nowrap;"><em>C</em><sub><em>x</em></sub><sup style="margin-left:-7px;"><em>2</em></sup></span>) space in a more accurate formulation than could be envisioned by Newton. This becomes more apparent in high gamma fields, such as found near a black hole horizon. It is hoped that probability theories, such as quantum field theories in curved space-time, might be adaptable to the general relativity isoframe concept introduced herein.