期刊文献+
共找到31,619篇文章
< 1 2 250 >
每页显示 20 50 100
Analysis of Ecosystem Degradation Factors in Yuanmou Arid-Hot Valleys Based on Interpretative Structural Model 被引量:2
1
作者 ZHANG Bin LIU Gangcai +2 位作者 AI Nanshan SHI Kai SHU Chengqiang 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期279-284,共6页
For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation... For ecological restoration and reconstruction of the degraded area, it is an important premise to correctly understand the degradation factors of the ecosystem in the arid-hot valleys. The factors including vegetation degradation, land degradation, arid climate, policy failure, forest fire, rapid population growth, excessive deforestation, overgrazing, steep slope reclamation, economic poverty, engineering construction, lithology, slope, low cultural level, geological hazards, biological disaster, soil properties etc, were selected to study the Yuanmou arid-hot valleys. Based on the interpretative structural model (ISM), it has found out that the degradation factors of the Yuanmou arid-hot valleys were not at the same level but in a multilevel hierarchical system with internal relations, which pointed out that the degradation mode of the arid-hot valleys was "straight (appearance)-penetrating-background". Such researches have important directive significance for the restoration and reconstruction of the arid-hot valleys ecosystem. 展开更多
关键词 interpretative structural model ECOSYSTEM degradation factors the arid-hot valleys
下载PDF
Women's experiences of formula feeding their infants:an interpretative phenomenological study 被引量:1
2
作者 Kin Yan Sze Zenobia Chung Yee Chan Vico Chung Lim Chiang 《Frontiers of Nursing》 CAS 2018年第1期49-59,共11页
Objective: This study aimed to explore the experiences of women in the process of formula feeding their infants. The World Health Organization has emphasized the importance of breastfeeding for infant health. After de... Objective: This study aimed to explore the experiences of women in the process of formula feeding their infants. The World Health Organization has emphasized the importance of breastfeeding for infant health. After decades of breastfeeding promotions,breastfeeding rates in Hong Kong have been rising consistently; however, the low continuation rate is alarming. This study explores women's experiences with formula feeding their infants, including factors affecting their decision to do so.Methods: A qualitative approach using an interpretative phenomenological analysis(IPA) was adopted as the study design. Data were collected from 2014 to 2015 through individual in-depth unstructured interviews with 16 women, conducted between 3 and 12 months after the birth of their infant. Data were analyzed using IPA.Results: Three main themes emerged as follows:(1) self-struggle, with the subthemes of feeling like a milk cow and feeling trapped;(2) family conflict, with the subtheme of sharing the spotlight; and(3) interpersonal tensions, with the subthemes of embarrassment,staring, and innocence. Many mothers suffered various stressors and frustrations during breastfeeding. These findings suggest a number of pertinent areas that need to be considered in preparing an infant feeding campaign.Conclusions: The findings of this study reinforce our knowledge of women's struggles with multiple sources of pressure, such as career demands, childcare demands, and family life after giving birth. All mothers should be given assistance in making informed decisions about the optimal approach to feeding their babies given their individual situation and be provided with support to pursue their chosen feeding method. 展开更多
关键词 formula FEEDING INFANT FEEDING BREASTFEEDING FEEDING decision experience Qualitative interpretative phenom enological analysis WOMEN education support NURSE nursing
下载PDF
Experiences of Staying Healthy in Relationally Demanding Jobs: An Interpretative Phenomenological Study of Work-Engaged Nurses in the Hospital 被引量:1
3
作者 Asgerdur Bjarnadottir Kjersti Vik 《Open Journal of Nursing》 2015年第5期437-450,共14页
Background: Based on the experience of hospital nurses, the aim of this study is to explore the phenomenon of how work-engaged nurses stay healthy in relationally demanding jobs involving very sick and/or dying patien... Background: Based on the experience of hospital nurses, the aim of this study is to explore the phenomenon of how work-engaged nurses stay healthy in relationally demanding jobs involving very sick and/or dying patients. Method: In-depth interviews were conducted with ten work-engaged nurses employed at the main hospital in one region in Norway. The interviews were interpreted using the Interpretative Phenomenological Analysis method (IPA). Results: The results indicate the importance of using the personal resources: authenticity and a sense of humour for staying healthy. The nurses’ authenticity, in the sense of having a strong sense of ownership towards their personal life experiences, and a sense of having a meaningful life in line with their own values and interests, was an important element when they considered their own health to be good in spite of repetitive strain injuries and perceived stress. These personal resources seem to be positively related to their well-being and work engagement, which serves as an argument for including them among other personal resources, often conceptualized in terms of Psychological Capital (PsyCap). The results also showed that the nurses worked actively and intentionally with conditions that could contribute to safeguarding their own health. Conclusion: The results indicated the importance of stimulating the nurses’ area of knowledge about caring for themselves in order to enable them to maintain good physical and mental health. A focus on self-care should be part of the agenda as early as during nursing education. 展开更多
关键词 Health Personal Resources WORK ENGAGEMENT Relationally Demanding JOBS Nurses interpretative PHENOMENOLOGICAL Analysis
下载PDF
Fault detection of large-scale process control system with higher-order statistical and interpretative structural model 被引量:1
4
作者 耿志强 杨科 +1 位作者 韩永明 顾祥柏 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期146-153,共8页
Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-... Nonlinear characteristic fault detection and diagnosis method based on higher-order statistical(HOS) is an effective data-driven method, but the calculation costs much for a large-scale process control system. An HOS-ISM fault diagnosis framework combining interpretative structural model(ISM) and HOS is proposed:(1) the adjacency matrix is determined by partial correlation coefficient;(2) the modified adjacency matrix is defined by directed graph with prior knowledge of process piping and instrument diagram;(3) interpretative structural for large-scale process control system is built by this ISM method; and(4) non-Gaussianity index, nonlinearity index, and total nonlinearity index are calculated dynamically based on interpretative structural to effectively eliminate uncertainty of the nonlinear characteristic diagnostic method with reasonable sampling period and data window. The proposed HOS-ISM fault diagnosis framework is verified by the Tennessee Eastman process and presents improvement for highly non-linear characteristic for selected fault cases. 展开更多
关键词 High order statistics Nonlinear characteristics diagnosis interpretative structural model TE process
下载PDF
A method to interpret fracture aperture of rock slope using adaptive shape and unmanned aerial vehicle multi-angle nap-of-the-object photogrammetry 被引量:2
5
作者 Mingyu Zhao Shengyuan Song +3 位作者 Fengyan Wang Chun Zhu Dianze Liu Sicong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期924-941,共18页
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ... The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance. 展开更多
关键词 Unmanned aerial vehicle(UAV) PHOTOGRAMMETRY High-steep rock slope Fracture aperture Interval effect Size effect Parameter interpretation
下载PDF
Energy consumption hierarchical analysis based on interpretative structural model for ethylene production
6
作者 韩永明 耿志强 +1 位作者 朱群雄 林晓勇 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2029-2036,共8页
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str... Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production. 展开更多
关键词 Partial correlation coefficient interpretative structural model Energy consumption Hierarchical analysis Ethylene production Chemical processes
下载PDF
Towards trustworthy multi-modal motion prediction:Holistic evaluation and interpretability of outputs
7
作者 Sandra Carrasco Limeros Sylwia Majchrowska +3 位作者 Joakim Johnander Christoffer Petersson MiguelÁngel Sotelo David Fernández Llorca 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期557-572,共16页
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po... Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability. 展开更多
关键词 autonomous vehicles EVALUATION interpretABILITY multi-modal motion prediction ROBUSTNESS trustworthy AI
下载PDF
Hyperspectral Image Based Interpretable Feature Clustering Algorithm
8
作者 Yaming Kang PeishunYe +1 位作者 Yuxiu Bai Shi Qiu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2151-2168,共18页
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy... Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81. 展开更多
关键词 HYPERSPECTRAL fuzzy clustering tissue P system band selection interpretable
下载PDF
THAPE: A Tunable Hybrid Associative Predictive Engine Approach for Enhancing Rule Interpretability in Association Rule Learning for the Retail Sector
9
作者 Monerah Alawadh Ahmed Barnawi 《Computers, Materials & Continua》 SCIE EI 2024年第6期4995-5015,共21页
Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only f... Association rule learning(ARL)is a widely used technique for discovering relationships within datasets.However,it often generates excessive irrelevant or ambiguous rules.Therefore,post-processing is crucial not only for removing irrelevant or redundant rules but also for uncovering hidden associations that impact other factors.Recently,several post-processing methods have been proposed,each with its own strengths and weaknesses.In this paper,we propose THAPE(Tunable Hybrid Associative Predictive Engine),which combines descriptive and predictive techniques.By leveraging both techniques,our aim is to enhance the quality of analyzing generated rules.This includes removing irrelevant or redundant rules,uncovering interesting and useful rules,exploring hidden association rules that may affect other factors,and providing backtracking ability for a given product.The proposed approach offers a tailored method that suits specific goals for retailers,enabling them to gain a better understanding of customer behavior based on factual transactions in the target market.We applied THAPE to a real dataset as a case study in this paper to demonstrate its effectiveness.Through this application,we successfully mined a concise set of highly interesting and useful association rules.Out of the 11,265 rules generated,we identified 125 rules that are particularly relevant to the business context.These identified rules significantly improve the interpretability and usefulness of association rules for decision-making purposes. 展开更多
关键词 Association rule learning POST-PROCESSING PREDICTIVE machine learning rule interpretability
下载PDF
Directly predicting N_(2) electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features
10
作者 Yaqin Zhang Yuhang Wang +1 位作者 Ninggui Ma Jun Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期139-148,I0004,共11页
Electrocatalytic nitrogen reduction to ammonia has garnered significant attention with the blooming of single-atom catalysts(SACs),showcasing their potential for sustainable and energy-efficient ammonia production.How... Electrocatalytic nitrogen reduction to ammonia has garnered significant attention with the blooming of single-atom catalysts(SACs),showcasing their potential for sustainable and energy-efficient ammonia production.However,cost-effectively designing and screening efficient electrocatalysts remains a challenge.In this study,we have successfully established interpretable machine learning(ML)models to evaluate the catalytic activity of SACs by directly and accurately predicting reaction Gibbs free energy.Our models were trained using non-density functional theory(DFT)calculated features from a dataset comprising 90 graphene-supported SACs.Our results underscore the superior prediction accuracy of the gradient boosting regression(GBR)model for bothΔg(N_(2)→NNH)andΔG(NH_(2)→NH_(3)),boasting coefficient of determination(R^(2))score of 0.972 and 0.984,along with root mean square error(RMSE)of 0.051 and 0.085 eV,respectively.Moreover,feature importance analysis elucidates that the high accuracy of GBR model stems from its adept capture of characteristics pertinent to the active center and coordination environment,unveilling the significance of elementary descriptors,with the colvalent radius playing a dominant role.Additionally,Shapley additive explanations(SHAP)analysis provides global and local interpretation of the working mechanism of the GBR model.Our analysis identifies that a pyrrole-type coordination(flag=0),d-orbitals with a moderate occupation(N_(d)=5),and a moderate difference in covalent radius(r_(TM-ave)near 140 pm)are conducive to achieving high activity.Furthermore,we extend the prediction of activity to more catalysts without additional DFT calculations,validating the reliability of our feature engineering,model training,and design strategy.These findings not only highlight new opportunity for accelerating catalyst design using non-DFT calculated features,but also shed light on the working mechanism of"black box"ML model.Moreover,the model provides valuable guidance for catalytic material design in multiple proton-electron coupling reactions,particularly in driving sustainable CO_(2),O_(2),and N_(2) conversion. 展开更多
关键词 Nitrogen reduction Single-atom catalyst interpretable machine learning Graphene Non-DFT features
下载PDF
Intelligent geochemical interpretation of mass chromatograms:Based on convolution neural network
11
作者 Kai-Ming Su Jun-Gang Lu +2 位作者 Jian Yu Zi-Xing Lu Shi-Jia Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期752-764,共13页
Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provide... Gas chromatography-mass spectrometry(GC-MS)is an extremely important analytical technique that is widely used in organic geochemistry.It is the only approach to capture biomarker features of organic matter and provides the key evidence for oil-source correlation and thermal maturity determination.However,the conventional way of processing and interpreting the mass chromatogram is both timeconsuming and labor-intensive,which increases the research cost and restrains extensive applications of this method.To overcome this limitation,a correlation model is developed based on the convolution neural network(CNN)to link the mass chromatogram and biomarker features of samples from the Triassic Yanchang Formation,Ordos Basin,China.In this way,the mass chromatogram can be automatically interpreted.This research first performs dimensionality reduction for 15 biomarker parameters via the factor analysis and then quantifies the biomarker features using two indexes(i.e.MI and PMI)that represent the organic matter thermal maturity and parent material type,respectively.Subsequently,training,interpretation,and validation are performed multiple times using different CNN models to optimize the model structure and hyper-parameter setting,with the mass chromatogram used as the input and the obtained MI and PMI values for supervision(label).The optimized model presents high accuracy in automatically interpreting the mass chromatogram,with R2values typically above 0.85 and0.80 for the thermal maturity and parent material interpretation results,respectively.The significance of this research is twofold:(i)developing an efficient technique for geochemical research;(ii)more importantly,demonstrating the potential of artificial intelligence in organic geochemistry and providing vital references for future related studies. 展开更多
关键词 Organic geochemistry BIOMARKER Mass chromatographic analysis Automated interpretation Convolution neural network Machine learning
下载PDF
Sci-tech Simultaneous Interpreter Education Based on Translation Universals Research
12
作者 JI Mengqi JI Xiaowen 《Sino-US English Teaching》 2024年第9期443-448,共6页
The rapid evolution of scientific and technological advancements and industrial changes has profoundly interconnected countries and regions in the digital information era,creating a globalized environment where effect... The rapid evolution of scientific and technological advancements and industrial changes has profoundly interconnected countries and regions in the digital information era,creating a globalized environment where effective communication is paramount.Consequently,the demand for proficient interpreting skills within the scientific and technology sectors has surged,making effective language communication increasingly crucial.This paper explores the potential impact of translation universals on enhancing sci-tech simultaneous interpreter education.By examining the selection of teaching materials,methods,and activities through the lens of translation universals,this study aims to improve the quality of teaching content,innovate instructional approaches,and ultimately,enhance the effectiveness of interpreter education.The findings of this research are expected to provide valuable insights for curriculum development and pedagogical strategies in interpreter education. 展开更多
关键词 simultaneous interpreting translation universals interpreter education sci-tech interpreting
下载PDF
An improved deep dilated convolutional neural network for seismic facies interpretation
13
作者 Na-Xia Yang Guo-Fa Li +2 位作者 Ting-Hui Li Dong-Feng Zhao Wei-Wei Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1569-1583,共15页
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network... With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information. 展开更多
关键词 Seismic facies interpretation Dilated convolution Spatial pyramid pooling Internal feature maps Compound loss function
下载PDF
Angular unconformity in Pennsylvanian strata from 3-D seismic interpretation,Goldsmith Field,West Texas
14
作者 Edwin I.Egbobawaye Nelly Omoruyi +3 位作者 Abdulmutallib Aminu Robert Trentham Mohamed K.Zobaa Sumit Verma 《Energy Geoscience》 EI 2024年第2期298-303,共6页
The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformi... The Pennsylvanian unconformity,which is a detrital surface,separates the beds of the Permian-aged strata from the Lower Paleozoic in the Central Basin Platform.Seismic data interpretation indicates that the unconformity is an angular unconformity,overlying multiple normal faults,and accompanied with a thrust fault which maximizes the region's structural complexity.Additionally,the Pennsylvanian angular unconformity creates pinch-outs between the beds above and below.We computed the spectral decomposition and reflector convergence attributes and analyzed them to characterize the angular unconformity and faults.The spectral decomposition attribute divides the broadband seismic data into different spectral bands to resolve thin beds and show thickness variations.In contrast,the reflector convergence attribute highlights the location and direction of the pinch-outs as they dip south at angles between 2° and 6°.After reviewing findings from RGB blending of the spectrally decomposed frequencies along the Pennsylvanian unconformity,we observed channel-like features and multiple linear bands in addition to the faults and pinch-outs.It can be inferred that the identified linear bands could be the result of different lithologies associated with the tilting of the beds,and the faults may possibly influence hydrocarbon migration or act as a flow barrier to entrap hydrocarbon accumulation.The identification of this angular unconformity and the associated features in the study area are vital for the following reasons:1)the unconformity surface represents a natural stratigraphic boundary;2)the stratigraphic pinch-outs act as fluid flow connectivity boundaries;3)the areal extent of compartmentalized reservoirs'boundaries created by the angular unconformity are better defined;and 4)fault displacements are better understood when planning well locations as faults can be flow barriers,or permeability conduits,depending on facies heterogeneity and/or seal effectiveness of a fault,which can affect hydrocarbon production.The methodology utilized in this study is a further step in the characterization of reservoirs and can be used to expand our knowledge and obtain more information about the Goldsmith Field. 展开更多
关键词 Pennsylvanian unconformity Seismic data interpretation Spectral decomposition Reflector convergence Reservoir characterization
下载PDF
Accountable capability improvement based on interpretable capability evaluation using belief rule base
15
作者 LI Xuan JIANG Jiang +2 位作者 SUN Jianbin YU Haiyue CHANG Leilei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1231-1244,共14页
A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and opt... A new approach is proposed in this study for accountable capability improvement based on interpretable capability evaluation using the belief rule base(BRB).Firstly,a capability evaluation model is constructed and optimized.Then,the key sub-capabilities are identified by quantitatively calculating the contributions made by each sub-capability to the overall capability.Finally,the overall capability is improved by optimizing the identified key sub-capabilities.The theoretical contributions of the proposed approach are as follows.(i)An interpretable capability evaluation model is constructed by employing BRB which can provide complete access to decision-makers.(ii)Key sub-capabilities are identified according to the quantitative contribution analysis results.(iii)Accountable capability improvement is carried out by only optimizing the identified key sub-capabilities.Case study results show that“Surveillance”,“Positioning”,and“Identification”are identified as key sub-capabilities with a summed contribution of 75.55%in an analytical and deducible fashion based on the interpretable capability evaluation model.As a result,the overall capability is improved by optimizing only the identified key sub-capabilities.The overall capability can be greatly improved from 59.20%to 81.80%with a minimum cost of 397.Furthermore,this paper also investigates how optimizing the BRB with more collected data would affect the evaluation results:only optimizing“Surveillance”and“Positioning”can also improve the overall capability to 81.34%with a cost of 370,which thus validates the efficiency of the proposed approach. 展开更多
关键词 accountable capability improvement interpretable capability evaluation belief rule base(BRB).
下载PDF
Computation Tree Logic Model Checking of Multi-Agent Systems Based on Fuzzy Epistemic Interpreted Systems
16
作者 Xia Li Zhanyou Ma +3 位作者 Zhibao Mian Ziyuan Liu Ruiqi Huang Nana He 《Computers, Materials & Continua》 SCIE EI 2024年第3期4129-4152,共24页
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s... Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system. 展开更多
关键词 Model checking multi-agent systems fuzzy epistemic interpreted systems fuzzy computation tree logic transformation algorithm
下载PDF
An Interpretable Light Attention-Convolution-Gate Recurrent Unit Architecture for the Highly Accurate Modeling of Actual Chemical Dynamic Processes
17
作者 Yue Li Ning Li +1 位作者 Jingzheng Ren Weifeng Shen 《Engineering》 SCIE EI CAS CSCD 2024年第8期104-116,共13页
To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new lig... To equip data-driven dynamic chemical process models with strong interpretability,we develop a light attention–convolution–gate recurrent unit(LACG)architecture with three sub-modules—a basic module,a brand-new light attention module,and a residue module—that are specially designed to learn the general dynamic behavior,transient disturbances,and other input factors of chemical processes,respectively.Combined with a hyperparameter optimization framework,Optuna,the effectiveness of the proposed LACG is tested by distributed control system data-driven modeling experiments on the discharge flowrate of an actual deethanization process.The LACG model provides significant advantages in prediction accuracy and model generalization compared with other models,including the feedforward neural network,convolution neural network,long short-term memory(LSTM),and attention-LSTM.Moreover,compared with the simulation results of a deethanization model built using Aspen Plus Dynamics V12.1,the LACG parameters are demonstrated to be interpretable,and more details on the variable interactions can be observed from the model parameters in comparison with the traditional interpretable model attention-LSTM.This contribution enriches interpretable machine learning knowledge and provides a reliable method with high accuracy for actual chemical process modeling,paving a route to intelligent manufacturing. 展开更多
关键词 interpretable machine learning Light attention-convolution-gate recurrent unit architecture Process knowledge discovery Data-driven process model Intelligent manufacturing
下载PDF
Identification and distribution of 13003 landslides in the northwest margin of Qinghai-Tibet Plateau based on human-computer interaction remote sensing interpretation
18
作者 Wei Wang Yuan-dong Huang +8 位作者 Chong Xu Xiao-yi Shao Lei Li Li-ye Feng Hui-ran Gao Yu-long Cui Shuai Wu Zhi-qiang Yang Kai Ma 《China Geology》 CAS CSCD 2024年第2期171-187,共17页
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai... The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area. 展开更多
关键词 LANDSLIDES Human-computer interaction interpretation Landslide database Spatial distribution Earthquake RAINFALL Human engineering activity Qinghai-Tibet Plateau Geological hazards survey engineering
下载PDF
Understanding Conceptualisations of Female Sex Addiction and Recovery Using Interpretative Phenomenological Analysis
19
作者 Manpreet K. Dhuffar Mark D. Griffiths 《Psychology Research》 2015年第10期585-603,共19页
关键词 概念化 女性 回收利用 学分 生活经历 历史问题 IPA 参与者
下载PDF
Log interpretation of carbonate rocks based on petrophysical facies constraints
20
作者 Hui Xu Hongwei Xiao +4 位作者 Guofeng Cheng Nannan Liu Jindong Cui Xing Shi Shangping Chen 《Energy Geoscience》 EI 2024年第3期39-51,共13页
The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in th... The complex pore structure of carbonate reservoirs hinders the correlation between porosity and permeability.In view of the sedimentation,diagenesis,testing,and production characteristics of carbonate reservoirs in the study area,combined with the current trends and advances in well log interpretation techniques for carbonate reservoirs,a log interpretation technology route of“geological information constraint+deep learning”was developed.The principal component analysis(PCA)was employed to establish lithology identification criteria with an accuracy of 91%.The Bayesian stepwise discriminant method was used to construct a sedimentary microfacies identification method with an accuracy of 90.5%.Based on production data,the main lithologies and sedimentary microfacies of effective reservoirs were determined,and 10 petrophysical facies with effective reservoir characteristics were identified.Constrained by petrophysical facies,the mean interpretation error of porosity compared to core analysis results is 2.7%,and the ratio of interpreted permeability to core analysis is within one order of magnitude,averaging 3.6.The research results demonstrate that deep learning algorithms can uncover the correlation in carbonate reservoir well logging data.Integrating geological and production data and selecting appropriate machine learning algorithms can significantly improve the accuracy of well log interpretation for carbonate reservoirs. 展开更多
关键词 Carbonate reservoir Principal component analysis(PCA) Bayesian stepwise discriminant analysis Petrophysical facies Well log interpretation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部