An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control...An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed t...The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.展开更多
Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological metho...Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.展开更多
This paper is concerned with anti-disturbance Nash equilibrium seeking for games with partial information.First,reduced-order disturbance observer-based algorithms are proposed to achieve Nash equilibrium seeking for ...This paper is concerned with anti-disturbance Nash equilibrium seeking for games with partial information.First,reduced-order disturbance observer-based algorithms are proposed to achieve Nash equilibrium seeking for games with firstorder and second-order players,respectively.In the developed algorithms,the observed disturbance values are included in control signals to eliminate the influence of disturbances,based on which a gradient-like optimization method is implemented for each player.Second,a signum function based distributed algorithm is proposed to attenuate disturbances for games with secondorder integrator-type players.To be more specific,a signum function is involved in the proposed seeking strategy to dominate disturbances,based on which the feedback of the velocity-like states and the gradients of the functions associated with players achieves stabilization of system dynamics and optimization of players'objective functions.Through Lyapunov stability analysis,it is proven that the players'actions can approach a small region around the Nash equilibrium by utilizing disturbance observerbased strategies with appropriate control gains.Moreover,exponential(asymptotic)convergence can be achieved when the signum function based control strategy(with an adaptive control gain)is employed.The performance of the proposed algorithms is tested by utilizing an integrated simulation platform of virtual robot experimentation platform(V-REP)and MATLAB.展开更多
In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsys...In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsystem,a dynamic loading subsystem,a specimen box subsystem,and a data measurement subsystem.The static loading subsystem uses low stiffness loss frame structure technology,which greatly improves the frame stiffness in the three principal stress directions(up to 20 GN/m)and ensures the demand of the disturbance experiment in both the prepeak and postpeak stages.The disturbance loads with frequency of 0e20 Hz and stress level of 0e30 MPa were applied using large flow parallel oil source technology characterized with high heat dissipation efficiency.For the disturbance loads with frequency of 100e500 Hz and stress level of 0e30 MPa,they were realized by using high-frequency and centimeter-per-second-scale low-speed disturbance rod technology.Three rigid self-stabilizing specimen boxes were utilized to provide support for the specimen and deformation sensors,ensuring the stability and accuracy of the data obtained.To verify the performance of the true triaxial test system,disturbance experiments were conducted on granite specimens.The results show that the experimental device satisfies the requirements of original design,with an excellent repeatability and reliable testing results.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties...Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.展开更多
The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fau...The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.展开更多
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult...Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.展开更多
This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the ...This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.展开更多
With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD ...With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous,which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids.In order to ensure safe and reliable equipment implementation,appropriate PQDdetection technologiesmust be adopted to avoid such adverse effects.This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the related field,where specific scenarios and events for which each technique is applicable are also clearly presented.Finally,comments on the future evolution of PQD detection techniques are given.Unlike the published review articles,this paper focuses on the new techniques from the last five years while providing a brief recap on traditional PQD detection techniques so as to supply researchers with a systematic and state-of-the-art review for PQD detection.展开更多
In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown externa...In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.展开更多
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
This paper investigates the error reachable set based stabilization problem for a class of discrete-time switched linear systems with bounded peak disturbances under persistent dwell-time(PDT)constraint.A double-clock...This paper investigates the error reachable set based stabilization problem for a class of discrete-time switched linear systems with bounded peak disturbances under persistent dwell-time(PDT)constraint.A double-clockdependent control scheme is presented that can split the disturbed switched system into a nominal system and an error system,and assign to each system a controller scheduled by a clock.A necessary and sufficient convex stability criterion is presented for the nominal system,and is further extended to the stabilization controller design with a nominal clock.In the presence of bounded peak disturbances,another stabilization controller with an error clock is developed for the error system,with the purpose of‘‘minimizing’’the reachable set of the error system by the ellipsoidal techniques.It is demonstrated that the disturbed system is also globally exponentially stable in the sense of converging to an over approximation of the reachable set of the error system,i.e.,a union of a family of bounding ellipsoids,that can also be regarded as the cross section of a tube containing the trajectories of the disturbed system.Two numerical examples are provided to verify the effectiveness of the developed results.展开更多
Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper...Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.展开更多
Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a...Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.展开更多
In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The stud...In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The study focused on perioperative dynamic respiratory and hemodynamic disturbances and early postsurgical inflammatory responses.展开更多
Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still po...Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.展开更多
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin...Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.展开更多
基金financially supported by the Sichuan Science and Technology Program(Grant No.2023NSFSC1980)。
文摘An observer-based adaptive backstepping boundary control is proposed for vibration control of flexible offshore riser systems with unknown nonlinear input dead zone and uncertain environmental disturbances.The control algorithm can update the control law online through real-time data to make the controller adapt to the environment and improve the control precision.Specifically,based on the adaptive backstepping framework,virtual control laws and Lyapunov functions are designed for each subsystem.Three direction interference observers are designed to track the timevarying boundary disturbance.On this basis,the inverse of the dead zone and linear state transformation are used to compensate for the original system and eliminate the adverse effects of the dead zone.In addition,the stability of the closed-loop system is proven by Lyapunov stability theory.All the system states are bounded,and the vibration offset of the riser converges to a small area of the initial position.Finally,four examples of flexible marine risers are simulated in MATLAB to verify the effectiveness of the proposed controller.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
文摘The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.
基金support by Melbourne International Research Scholarship (MIRS)。
文摘Understanding how past disturbances have influenced the development of forests is critical for deciphering their current structure and composition and forecasting future changes.In this study,dendrochronological methods were applied to uncover the disturbance history of old-growth hemlock-dominated forests in central Bhutan.Analysis of tree-ring samples from two old-growth hemlock stands,located in two different topographic settings,identified the importance of gap-phase dynamics in facilitating recruitment and growth releases and producing complex,multi-aged structure s over time.One site showed evidence of a near stand-replacing disturbance in the late 1700s,while the other showed no evide nce of high-severity disturbance at any time over the last 400 years.At both sites low-to medium-severity disturbances,some of which appear to be associated with cyclones originating in the Bay of Bengal,dominated the disturbance regime.The hemlock stands exhibited a significant positive association between cyclone occurrence and growth release events and between recruitment pulses and growth release events.From 1800 to 1970 there was an increase in recruitment of angiosperm tree species at most sites and a corresponding decline in conifer recruitment.Over the past 50 years there has been little new recruitment;this may be due to light limitation in the understory from shade-tolerant angiosperms and bamboo in the lower strata of these stands.Significant variations in disturbance dynamics and recruitment were observed across the study sites,suggesting that other factors,such as topography and climate,may be influencing long-term stand development patterns.This study highlights the complex interplay between historical disturbance regimes and tree recruitment in shaping the age and size structures of old-growth hemlock forests in central Bhutan.It also provides new insights into the dynamics of these forests that can be used to support effective forest conservation and management in the future.
基金supported by the National Natural Science Foundation of China(NSFC)(62222308,62173181,62073171,62221004)the Natural Science Foundation of Jiangsu Province(BK20200744,BK20220139)+3 种基金Jiangsu Specially-Appointed Professor(RK043STP19001)1311 Talent Plan of Nanjing University of Posts and Telecommunicationsthe Young Elite Scientists SponsorshipProgram by CAST(2021QNRC001)the Fundamental Research Funds for the Central Universities(30920032203)。
文摘This paper is concerned with anti-disturbance Nash equilibrium seeking for games with partial information.First,reduced-order disturbance observer-based algorithms are proposed to achieve Nash equilibrium seeking for games with firstorder and second-order players,respectively.In the developed algorithms,the observed disturbance values are included in control signals to eliminate the influence of disturbances,based on which a gradient-like optimization method is implemented for each player.Second,a signum function based distributed algorithm is proposed to attenuate disturbances for games with secondorder integrator-type players.To be more specific,a signum function is involved in the proposed seeking strategy to dominate disturbances,based on which the feedback of the velocity-like states and the gradients of the functions associated with players achieves stabilization of system dynamics and optimization of players'objective functions.Through Lyapunov stability analysis,it is proven that the players'actions can approach a small region around the Nash equilibrium by utilizing disturbance observerbased strategies with appropriate control gains.Moreover,exponential(asymptotic)convergence can be achieved when the signum function based control strategy(with an adaptive control gain)is employed.The performance of the proposed algorithms is tested by utilizing an integrated simulation platform of virtual robot experimentation platform(V-REP)and MATLAB.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.51839003),for which we are grateful.
文摘In this context,a testing system to understand rock fracturing processes induced by different dynamic disturbances under true triaxial compression was developed.The system is mainly composed of a static loading subsystem,a dynamic loading subsystem,a specimen box subsystem,and a data measurement subsystem.The static loading subsystem uses low stiffness loss frame structure technology,which greatly improves the frame stiffness in the three principal stress directions(up to 20 GN/m)and ensures the demand of the disturbance experiment in both the prepeak and postpeak stages.The disturbance loads with frequency of 0e20 Hz and stress level of 0e30 MPa were applied using large flow parallel oil source technology characterized with high heat dissipation efficiency.For the disturbance loads with frequency of 100e500 Hz and stress level of 0e30 MPa,they were realized by using high-frequency and centimeter-per-second-scale low-speed disturbance rod technology.Three rigid self-stabilizing specimen boxes were utilized to provide support for the specimen and deformation sensors,ensuring the stability and accuracy of the data obtained.To verify the performance of the true triaxial test system,disturbance experiments were conducted on granite specimens.The results show that the experimental device satisfies the requirements of original design,with an excellent repeatability and reliable testing results.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金National Natural Science Foundation of China (No. 52204101)Natural Science Foundation of Shandong Province (No. ZR2022QE137)Open Project of State Key Laboratory for Geomechanics and Deep Underground Engineering in CUMTB (No. SKLGDUEK2023).
文摘Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%,40%,60%,80%,dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance.The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed.Results of experimental studies show that water is a key factor in the mechanical properties of rocks,softening them,increasing their porosity,reducing their brittleness and increasing their plasticity.Under uniaxial compression,the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and‘X’type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases.Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60%and less water content,and a weakening effect on samples with 80%and more water content,but the weakening effect is not obvious.Macroscopic damage characteristics of dry samples remain unchanged,water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage,until saturation transformation monoclinic shear damage.The evolution of acoustic emission energy and event number is mainly divided into four stages:loading stage(Ⅰ),dynamic loading stage(Ⅱ),yield failure stage(Ⅲ),and post-peak stage(Ⅳ),the acoustic emission characteristics of the stages were different for different water contents.The characteristic value of acoustic emission key point frequency gradually decreases,and the damage degree of the specimen increases,corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62203246, 62003127, and 62003183)。
文摘The fault-tolerant control problem is investigated for high-speed trains with actuator faults and multiple disturbances.Based on the novel train model resulting from the Takagi–Sugeno fuzzy theory, a sliding-mode fault-tolerant control strategy is proposed. The norm bounded disturbances which are composed of interactive forces among adjacent carriages and basis running resistances are rearranged by the fuzzy linearity technique. The modeled disturbances described as an exogenous system are compensated for by a disturbance observer. Moreover, a sliding mode surface is constructed, which can transform the stabilization problem of position and velocity into the stabilization problem of position errors and velocity errors, i.e., the tracking problem of position and velocity. Based on the parallel distributed compensation method and the disturbance observer, the fault-tolerant controller is solved. The Lyapunov theory is used to prove the stability of the closed-loop system. The feasibility and effectiveness of the proposed fault-tolerant control strategy are illustrated by simulation results.
基金Foundation of China(No.52067013)the Key Natural Science Fund Project of Gansu Provincial Department of Science and Technology(No.21JR7RA280)+1 种基金the Tianyou Innovation Team Science Foundation of Intelligent Power Supply and State Perception for Rail Transit(No.TY202010)the Natural Science Foundation of Gansu Province(No.20JR5RA395).
文摘Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.
基金partially supported by National Key Research and Development Program of China(2019YFC1510902)National Natural Science Foundation of China(62073104)+1 种基金Natural Science Foundation of Heilongjiang Province(LH2022F024)China Postdoctoral Science Foundation(2022M710965)。
文摘This paper presents a subspace identification method for closed-loop systems with unknown deterministic disturbances.To deal with the unknown deterministic disturbances,two strategies are implemented to construct the row space that can be used to approximately represent the unknown deterministic disturbances using the trigonometric functions or Bernstein polynomials depending on whether the disturbance frequencies are known.For closed-loop identification,CCF-N4SID is extended to the case with unknown deterministic disturbances using the oblique projection.In addition,a proper Bernstein polynomial order can be determined using the Akaike information criterion(AIC)or the Bayesian information criterion(BIC).Numerical simulation results demonstrate the effectiveness of the proposed identification method for both periodic and aperiodic deterministic disturbances.
文摘With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous,which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids.In order to ensure safe and reliable equipment implementation,appropriate PQDdetection technologiesmust be adopted to avoid such adverse effects.This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the related field,where specific scenarios and events for which each technique is applicable are also clearly presented.Finally,comments on the future evolution of PQD detection techniques are given.Unlike the published review articles,this paper focuses on the new techniques from the last five years while providing a brief recap on traditional PQD detection techniques so as to supply researchers with a systematic and state-of-the-art review for PQD detection.
基金supported in part by the National Natural ScienceFoundation of China (U2013201)the National Science Fund for Distinguished Young Scholars (61825302)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX20_0208)。
文摘In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘This paper investigates the error reachable set based stabilization problem for a class of discrete-time switched linear systems with bounded peak disturbances under persistent dwell-time(PDT)constraint.A double-clockdependent control scheme is presented that can split the disturbed switched system into a nominal system and an error system,and assign to each system a controller scheduled by a clock.A necessary and sufficient convex stability criterion is presented for the nominal system,and is further extended to the stabilization controller design with a nominal clock.In the presence of bounded peak disturbances,another stabilization controller with an error clock is developed for the error system,with the purpose of‘‘minimizing’’the reachable set of the error system by the ellipsoidal techniques.It is demonstrated that the disturbed system is also globally exponentially stable in the sense of converging to an over approximation of the reachable set of the error system,i.e.,a union of a family of bounding ellipsoids,that can also be regarded as the cross section of a tube containing the trajectories of the disturbed system.Two numerical examples are provided to verify the effectiveness of the developed results.
基金supported by the Natural Science Foundation of Hunan Province(2023JJ50047,2023JJ40306)the Research Foundation of Education Bureau of Hunan Province(23A0494,20B260)the Key R&D Projects of Hunan Province(2019SK2331)。
文摘Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.
文摘Disturbances such as forest fires,intense winds,and insect damage exert strong impacts on forest ecosystems by shaping their structure and growth dynamics,with contributions from climate change.Consequently,there is a need for reliable and operational methods to monitor and map these disturbances for the development of suitable management strategies.While susceptibility assessment using machine learning methods has increased,most studies have focused on a single disturbance.Moreover,there has been limited exploration of the use of“Automated Machine Learning(AutoML)”in the literature.In this study,susceptibility assessment for multiple forest disturbances(fires,insect damage,and wind damage)was conducted using the PyCaret AutoML framework in the Izmir Regional Forest Directorate(RFD)in Turkey.The AutoML framework compared 14 machine learning algorithms and ranked the best models based on AUC(area under the curve)values.The extra tree classifier(ET)algorithm was selected for modeling the susceptibility of each disturbance due to its good performance(AUC values>0.98).The study evaluated susceptibilities for both individual and multiple disturbances,creating a total of four susceptibility maps using fifteen driving factors in the assessment.According to the results,82.5%of forested areas in the Izmir RFD are susceptible to multiple disturbances at high and very high levels.Additionally,a potential forest disturbances map was created,revealing that 15.6%of forested areas in the Izmir RFD may experience no damage from the disturbances considered,while 54.2%could face damage from all three disturbances.The SHAP(Shapley Additive exPlanations)methodology was applied to evaluate the importance of features on prediction and the nonlinear relationship between explanatory features and susceptibility to disturbance.
文摘In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The study focused on perioperative dynamic respiratory and hemodynamic disturbances and early postsurgical inflammatory responses.
基金financially supported by the Key Project of Zhejiang Provincial Natural Science Foundation of China(LZ22C200003)the National Natural Science Foundation of China(32072290)。
文摘Histamine in food has attracted widespread attention due to the potential toxicity and associated health risk.However,its influences on immunological components,especially the function of key immune cells,are still poorly known.In this work,we explored the effects of exogenous histamine on the function of key immune cells such as intestinal epithelial cells,dendritic cells,and T cells.The results showed that histamine could affect the expression of allergy-related genes in CMT93 cells at a high dose of histamine.Moreover,it’s found that histamine could cause an imbalance in the levels of relevant immune factors secreted by dendritic cells and T cells,especially those related to allergy.At the same time,the proportion of MHC class IIpositive dendritic cells and the proportion of T helper 2(Th2)cells in CD4^(+)T cells increased after histamine stimulation.We concluded that the presence of a certain level of histamine in food may affect the expression of allergy-related cytokines,disrupt the balance of the immune homeostasis,and potentially lead to adverse immune reactions.This work demonstrated the importance of including the estimation of histamine’s immune safety in aquatic products rather than merely considering the potential risk of food poisoning.
基金the National Natural Science Foundation of China(No.52275062)and(No.52075262).
文摘Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach.