期刊文献+
共找到3,103篇文章
< 1 2 156 >
每页显示 20 50 100
Organic matter and concentrated nitrogen removal by shortcut nitrification and denitrification from mature municipal landfill leachate 被引量:16
1
作者 ZHANG Shu-jun PENG Yong-zhen WANG Shu-ying ZHENG Shu-wen GUO Jin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第6期647-651,共5页
An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, t... An UASB+Anoxic/Oxic (A/O) system was introduced to treat a mature landfill leachate with low carbon-to-nitrogen ratio and high ammonia concentration. To make the best use of the biodegradable COD in the leaehate, the denitrifieation of NOx^--N in the reeireulation effluent from the elarifier was carried out in the UASB. The results showed that most biodegradable organic matters were removed by the denitrifieation in the UASB. The NH4^+-N loading rate (ALR) of A/O reactor and operational temperature was 0.28- 0.60 kg NH4^+-N/(m^3-d) and 17-29℃ during experimental period, respectively. The short-cut nitrification with nitrite accumulation efficiency of 90%-99% was stabilized during the whole experiment. The NH4^+-N removal efficiency varied between 90% and 100%. When ALR was less than 0.45 kg NH4^+-N/(m^3.d), the NH4^+-N removal efficiency was more than 98%. With the influent NH4^+-N of 1200-1800 mg/L, the effluent NH4^+-N was less than 15 mg/L. The shortcut nitrification and denitrifieation can save 40% carbon source, with a highly efficient denitrifieation taking place in the UASB. When the ratio of the feed COD to feed NH4^+-N was only 2-3, the total inorganic nitrogen (TIN) removal efficiency attained 67%-80%. Besides, the sludge samples from A/O reactor were analyzed using FISH. The FISH analysis revealed that ammonia oxidation bacteria (AOB) accounted for 4% of the total eubaeterial population, whereas nitrite oxidation bacteria (NOB) accounted only for 0.2% of the total eubaeterial population. 展开更多
关键词 mature landfill leachate UASB+A/O shortcut nitrification carbon source
下载PDF
Efficient and selective removal of Pb(Ⅱ) from landfill leachate using L-serine-modified polyethylene/polypropylene nonwoven fabric synthesized via radiation grafting technique
2
作者 Xin-Xin Feng Cheng Li +6 位作者 Xuan-Zhi Mao Wan-Ning Ren Yang Gao Yu-Long He Zhe Xing Rong Li Guo-Zhong Wu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期144-155,共12页
In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl me... In this study,to efficiently remove Pb(Ⅱ) from aqueous environments,a novel L-serine-modified polyethylene/polypropylene nonwoven fabric sorbent(NWF-serine)was fabricated through the radiation grafting of glycidyl methacrylate and subsequent L-serine modification.The effect of the absorbed dose was investigated in the range of 5–50 kGy.NWF-serine was characterized by Fourier transform infrared spectroscopy,thermogravimetric analysis,and scanning electron microscopy.Batch adsorption tests were conducted to investigate the influences of pH,adsorption time,temperature,initial concentration,and sorbent dosage on the Pb(Ⅱ) adsorption performance of NWF-serine.The results indicated that Pb(Ⅱ) adsorption onto NWF-serine was an endothermic process,following the pseudo-second-order kinetic model and Langmuir isotherm model.The saturated adsorption capacity was 198.1 mg/g.NWF-serine exhibited Pb(Ⅱ) removal rates of 99.8% for aqueous solutions with initial concentrations of 100 mg/L and 82.1% for landfill leachate containing competitive metal ions such as Cd,Cu,Ni,Mn,and Zn.Furthermore,NWF-serine maintained 86% of its Pb(Ⅱ) uptake after five use cycles.The coordination of the carboxyl and amino groups with Pb(Ⅱ) was confirmed using X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. 展开更多
关键词 landfill leachate Radiation grafting Polyethylene/polypropylene nonwoven fabric Pb(Ⅱ)removal
下载PDF
H_2S removal in landfill leachate treatment using UASB reactor 被引量:1
3
作者 华佳 张林生 +1 位作者 潘艳丽 李月中 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期91-95,共5页
Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the... Leachate from a sanitary landfill site in Chengdu, China is treated using a hybrid-UASB reactor at pilot scale. H2S, resulting from the anaerobic bioconversion process of sulfate-reducing bacteria(SRB), inhibits the growth and activity of methane-producing bacteria(MPB)and poses serious problems of pollution, so FeCl3is used for H2S removal. The results show that the system performs well in the treatment process. COD removal generally increases with the increase in the organic loading rate(OLR), while the sulfate removal decreases slowly. As the OLR is higher than 7 kgCOD/(m3·d), both COD and sulfate removal tend to be stable. When the reactor is operated at the design load of 9 kgCOD/(m3·d), COD and sulfate removal remain about 79% and 91%, respectively. At the same time, the percentage of COD removed by SRB(CODSRB)also decreases from 8.9% to 4.0%. With FeCl3 addition, COD removal increases to 83%, while sulfate removal and CODSRBfurther decrease to 89% and 1.89%, respectively. According to the mass balance, nearly 82% of the sulfur is prevented from converting into H2S. Moreover, when the FeCl3 dosage is more than 1.6 g/L leachate, H2S can be removed totally from the biogas. Therefore, the application of FeCl3 for H2S removal in leachate treatment using the UASB reactor is very suitable and viable. 展开更多
关键词 landfill leachate upflow anaerobic sludge blanket(UASB) H2S FECL3 sulfur balance
下载PDF
Characteristics of dissolved organic matter(DOM) in leachate with different landfill ages 被引量:55
4
作者 HUO Shouliang XI Beidou +3 位作者 YU Haichan HE Liansheng FAN Shilei LIU Hongliang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期492-498,共7页
The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic ac... The main objective of the study was to investigate the characteristics of dissolved organic matter (DOM) in leachate with different landfill ages through the chemical, spectroscopic, and elemental analysis. Humic acid (HA), fulvic acid (FA), and hydrophilic (HyI) fractions were isolated and purified by the XAD-8 resin combined with the cation exchange resin method. The analytical results of fluorescence excitation-emission matrix spectroscopy (EEMs) revealed that the fluorescence peaks were protein-like fluorescence for young landfill leachate, while the fluorescence peaks for medium and old landfill leachate were humic-like and fulvic-like fluorescence, respectively. Elemental analysis showed that carbon, hydrogen, and nitrogen content decreased with landfill age, while the oxygen content increased. Moreover, the nitrogen content in these isolated fractions followed: HA 〉 HyI 〉 FA. The results of elemental analysis, FT-IR, and fluorescence EEMs also confirmed that aromatic carbons and portions of aliphatic functional groups were more abundant in leachate samples with increasing landfill age. 展开更多
关键词 dissolved organic matter (DOM) fluorescence EEMs DOM fractionafion landfill leachate
下载PDF
Advanced landfill leachate treatment using a two-stage UASB-SBR system at low temperature 被引量:26
5
作者 Hongwei Sun,Qing Yang,Yongzhen Peng,Xiaoning Shi,Shuying Wang,Shujun Zhang Key Laboratory of Beijing Water Quality Science and Water Envirocnnment Recovery Engineering,Beijing University of Technology,Beijing 100124,China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期481-485,共5页
A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to impro... A two-stage upflow anaerobic sludge blanket (UASB) and sequencing batch reactor (SBR) system was introduced to treat landfill leachate for advanced removal of COD and nitrogen at low temperature. In order to improve the total nitrogen (TN) removal efficiency and to reduce the COD requirement for denitrification, the raw leachate with recycled SBR nitrification supematant was pumped into the first-stage UASB (UASB1) to achieve simultaneous denitrification and methanogenesis. The results showed that UASB1 played an important role in COD removal and UASB2 and SBR further enhanced the nutrient removal efficiency. When the organic loading rates of UASB1, UASB2 and SBR were 11.95, 1.63 and 1.29 kg COD/(m^3.day), respectively, the total COD removal efficiency of the whole system reached 96.7%. The SBR acted as the real undertaker for NH4^+-N removal due to aerobic nitrification. The system obtained about 99.7% of NH4^+-N removal efficiency at relatively low temperature (14.9-10.9℃). More than 98.3% TN was removed through complete denitrification in UASB 1 and SBR. In addition, temperature had a significant effect on the rates of nitrification and denitrification rather than the removal of TN and NH4^+-N once the complete nitrification and denitrification were achieved. 展开更多
关键词 landfill leachate two-stage UASB-SBR advanced nitrogen removal low temperature NITRIFICATION DENITRIFICATION
下载PDF
An autotrophic nitrogen removal process:Short-cut nitrification combined with ANAMMOX for treating diluted effluent from an UASB reactor fed by landfill leachate 被引量:26
6
作者 Jie Liu Jian'e Zuo +3 位作者 Tang Yang Shuquan Zhu Sulin Kuang Kaijun Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第5期777-783,共7页
A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow ... A combined process consisting of a short-cut nitrification (SN) reactor and an anaerobic ammonium oxidation upflow anaerobic sludge bed (ANAMMOX) reactor was developed to treat the diluted effluent from an upflow anaerobic sludge bed (UASB) reactor treating high ammonium municipal landfill leachate.The SN process was performed in an aerated upflow sludge bed (AUSB) reactor (working volume 3.05 L),treating about 50% of the diluted raw wastewater.The ammonium removal efficiency and the ratio of NO 2 N to NOx-N in the effluent were both higher than 80%,at a maximum nitrogen loading rate of 1.47 kg/(m 3 ·day).The ANAMMOX process was performed in an UASB reactor (working volume 8.5 L),using the mix of SN reactor effluent and diluted raw wastewater at a ratio of 1:1.The ammonium and nitrite removal efficiency reached over 93% and 95%,respectively,after 70-day continuous operation,at a maximum total nitrogen loading rate of 0.91 kg/(m 3 ·day),suggesting a successful operation of the combined process.The average nitrogen loading rate of the combined system was 0.56 kg/(m 3 ·day),with an average total inorganic nitrogen removal efficiency 87%.The nitrogen in the effluent was mostly nitrate.The results provided important evidence for the possibility of applying SN-ANAMMOX after UASB reactor to treat municipal landfill leachate. 展开更多
关键词 landfill leachate short-cut nitrification anaerobic ammonia oxidation autotrophic nitrogen removal
下载PDF
Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill 被引量:11
7
作者 HUANG Qifei YANG Yufei +1 位作者 PANG Xiangrui WANG Qi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期499-504,共6页
To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen de... To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi- aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The restflts showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade. 展开更多
关键词 semi-aerobic landfill STABILIZATION leachate landfill gas
下载PDF
Control factors of partial nitritation for landfill leachate treatment 被引量:15
8
作者 LIANG Zhu LIU Jun-xin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第5期523-529,共7页
Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^... Anaerobic ammonium oxidation (ANAMMOX) technology has potential technical superiority and economical efficiency for the nitrogen removal from landfill leachate, which contains high-strength ammonium nitrogen (NH4^+-N) and refractory organics. To complete the ANAMMOX process, a preceding partial nitritation step to produce the appropriate ratio of nitrite/ammonium is a key stage. The objective of this study was to determine the optimal conditions to acquire constant partial nitritation for landfill leachate treatment, and a bench scale fixed bed bio-film reactor was used in this study to investigate the effects of the running factors on the partial nitritation. The results showed that both the dissolved oxygen (DO) concentration and the ammonium volumetric loading rate (Nv) had effects on the partial nitritation. In the controlling conditions with a temperature of 30±1℃, Nv of 0.2-1.0 kg NH4+-N/(m^3·d), and DO concentration of 0.8-2.3 mg/L, the steady partial nitritation was achieved as follows: more than 94% partial nitritation efficiency (nitrite as the main product), 60%-74% NH4^+-N removal efficiency, and NO2^--N/NH4^+-N ratio (concentration ratio) of 1.0-1.4 in the effluent.The impact of temperature was related to Nv at certain DO concentration, and the temperature range of 25-30℃ was suitable for treating high strength ammonium leachate. Ammonium-oxidizing bacteria (AOB) could be acclimated to higher FA (free ammonium) in the range of 122-224 mg/L. According to the denaturing gradient gel electrophoresis analysis result of the bio-film in the reactor, there were 25 kinds of 16S rRNA gene fragments, which indicated that abundant microbial communities existed in the bio-film, although high concentrations of ammonium and FA may inhibit the growth of the nitrite-oxidizing bacteria (NOB) and other microorganisms in the reactor. 展开更多
关键词 landfill leachate biological nitrogen removal partial nitritation ANAMMOX
下载PDF
Three-stage aged refuse biofilter for the treatment of landfill leachate 被引量:11
9
作者 LI Hongjiang ZHAO Youcai +1 位作者 SHI Lei GU Yingying 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第1期70-75,共6页
A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m^3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofil... A field-scale aged refuse (AR) biofilter constructed in Shanghai Refuse Landfill, containing about 7000 m^3 aged refuse inside, was evaluated for its performance in the treatment of landfill leachate. This AR biofilter can be divided into three stages and can manage 50 m^3 landfill leachate per day. The physical, chemical, and biological characteristics of AR were analyzed for evaluating the AR biofilter as leachate treatment host. The results revealed that over 87.8%-96.2% of COD and 96.9%-99.4% of ammonia nitrogen were removed by the three-stage AR biofilter when the infiuent leachate COD and ammonia nitrogen concentration were in the range 5478-10842 mg/L and 811-1582 mg/L, respectively. The final effluent was inodorous and pale yellow with COD and ammonia nitrogen below 267-1020 mg/L and 6-45 mg/L, respectively. The three-stage AR biofilter had efficient nitrification but relative poor denitrification capacity with a total nitrogen (TN) removal of 58%-73%. The external temperature of AR biofilter did not influence the total ammonia nitrogen removal significantly. It was concluded that the scale-up AR biofilter can work very well and can be a promising technology for the treatment of landfill leachate. 展开更多
关键词 aged refuse BIOFILTER landfill leachate COD ammonia nitrogen
下载PDF
Nitrogen removal via nitrite from municipal landfill leachate 被引量:14
10
作者 WU Lina, PENG Chengyao, ZHANG Shujun, PENG Yongzhen Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第11期1480-1485,共6页
A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrific... A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB), an anoxic/aerobic (A/O) reactor and a sequencing batch reactor (SBR), was used to treat landfill leachate. During operation, denitrification and methanogenesis took place simultaneously in the first stage UASB, and the effluent chemical oxygen demand (COD) was further removed in the second stage UASB. Then the denitrification of nitrite and nitrate in the returned sludge by using the residual COD was accomplished in the A/O reactor, and ammonia was removed via nitrite in it. Last but not least, the residual ammonia was removed in SBR as well as nitrite and nitrate which were produced by nitrification. The results over 120 d (60 d for phase I and 60 d for phase II) were as follows: when the total nitrogen (TN) concentration of influent leachate was about 2500 mg/L and the ammonia nitrogen concentration was about 2000 mg/L, the shortcut nitrification with 85%-90% nitrite accumulation was achieved stably in the A/O reactor. The TN and ammonia nitrogen removal efficiencies of the system were 98% and 97%, respectively. The residual ammonia, nitrite and nitrate produced during nitrification in the A/O reactor could be washed out almost completely in SBR. The TN and ammonia nitrogen concentrations of final effluent were about 39 mg/L and 12 mg/L, respectively. 展开更多
关键词 short-cut nitrification up-flow anaerobic sludge blanket anoxic/aerobic reactor sequencing batch reactor landfill leachate
下载PDF
Characterization of refuse landfill leachates of three different stages in landfill stabilization process 被引量:9
11
作者 LOU Ziyang DONG Bin +3 位作者 CHAI Xiaoli SONG Yu ZHAO Youcai ZHU Nanwen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1309-1314,共6页
Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid si... Landfill leachates with different ages (mature leachate, 11 years; semi-mature leachate, 5 years; fresh leachate, under operation) were collected from Laogang Refuse Landfill, Shanghai to characterize the colloid size distribution and variations of leachate. These leachates were separated using micro-filtration and ultra-filtration into specific size fractions, i.e., suspended particles (SP) (〉 1.2 μm), coarse colloids (CC) (1.2-0.45 μm), fine colloids (FC) (0.45 m, 5 kDa/1 kDa molecular weight (MW)), and dissolved organic matters (DM, 〈 5 kDa/1 kDa MW). The specific colloids in each size fraction were quantified and characterized through chemical oxygen demands (COD), total solid (TS), pH, NH4^+-N, total organic carbon (TOC) and fixed solid (FS). It was found that COD, NH^4+-N and TS in leachate decreased significantly over ages, while pH increased. The dissolved fractions (〈 5 kDa/1 kDa) dominated (over 50%) in three leachates in terms of COD, and the organic matter content in dissolved fraction of leachates decreased and the inorganic matter increased as the disposal time extended, with the TOC/COD ratio 30%-7%. Dissolved fractions decreased from 82% to 40% in terms of TOC as the disposal time extended, suggested that the organic matter remained in leachate would form into middle molecular weight substances during the degradation process. 展开更多
关键词 CHARACTERIZATION landfill leachate different ages size-distribution
下载PDF
Limit equilibrium analysis of translational failure of landfills under different leachate buildup conditions 被引量:7
12
作者 Qian Xuede 《Water Science and Engineering》 EI CAS 2008年第1期44-62,共19页
Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of ... Excessive leachate levels in landfills can be a major triggering mechanism for translational failure. The scope of this paper is to present the development of the calculation methods for limit equilibrium analysis of translational failure of landfills and the effects of parametric variation on the factor of safety (FS) of landfills under different leachate buildup conditions. During the development of the calculation methods, 4 leachate buildup conditions are considered. The FS for an interface with high friction angle and low apparent cohesion generally drops much more quickly when leachate levels are increased than that for an interface under inverse conditions. The critical interface of a multilayer liner system with the lowest FS for the entire waste mass can shift from one to another with changes in the leachate levels. The different interfaces of a multilayer liner will have different FS-values under different leachate buildup conditions. 展开更多
关键词 landfillS failure WEDGE leachate level SEEPAGE shear strength COHESION
下载PDF
Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology 被引量:7
13
作者 XU Yiping ZHOU Yiqi +3 位作者 WANG Donghong CHEN Shaohua LIU Junxin WANG Zijian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1281-1287,共7页
Organic micropollutants,with high toxicity and environmental concern,are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD),biochemical oxygen demand (B... Organic micropollutants,with high toxicity and environmental concern,are present in the landfill leachate at much lower levels than total organic constituents (chemical oxygen demand (COD),biochemical oxygen demand (BOD),or total organic carbon (TOC)),and few has been known for their behaviors in different treatment processes.In this study,occurrence and removal of 17 organochlorine pesticides (OCPs),16 polycyclic aromatic hydrocarbons (PAHs),and technical 4-nonylphenol (4-NP) in landfill leachate in a comb... 展开更多
关键词 ANAEROBIC landfill leachate membrane bioreactor organic micropollutant
下载PDF
Nitrite Accumulation during the Denitrification Process in SBR for the Treatment of Pre-treated Landfill Leachate 被引量:36
14
作者 孙洪伟 杨庆 +3 位作者 彭永臻 时晓宁 王淑莹 张树军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期1027-1031,共5页
The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite ... The nitrite accumulation in the denitrification process is investigated with sequencing batch reactor (SBR) treating pre-treated landfill leachate in anoxic/anaerobic up-flow anaerobic sludge bed I(UASB). Nitrite accumulates obviously at different initial nitrate concentrations (64.9,54.8,49.3 and 29.5 mg·L^-1 ) and low temperatures, and the two break points on the oxidation-reduction potential (ORP) profile indicate the completion of nitrate and nitrite reduction. Usually, the nitrate reduction rate is used as the sole parameter to characterize the denitrification rate, and nitrite is not even measured. For accuracy, the total oxidized nitrogen (nitrate + nitrite) is used as a measure, though details characterizing the process may be overlooked. Additionally, batch tests are conducted to investigate the effects of C/N ratios and types of carbon sources on the nitrite accumulation during the denitrification. It is observed that carbon source is sufficient for the reduction of nitrate to nitrite, but for further reduction of nitrite to nitrogen gas, is deficient when C/N is below the theoretical critical level of 3.75 based on the stoichiometry of denitrification. Five carbon sources used in this work, except for glucose, may cause the nitrite accumulation. From experimental results and cited literature, it is concluded that Alcaligene species may be contained in the SBR activated-sludge system. 展开更多
关键词 landfill leachate nitrite accumulation DENITRIFICATION C/N ratio carbon source sequencing batch reactor
下载PDF
Landfill leachate treatment in assisted landfill bioreactor 被引量:3
15
作者 HE Pin-jing QU Xian +1 位作者 SHAO Li-ming LEE Duu-jong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第1期176-179,共4页
Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was p... Landfill is the major disposal route of municipal solid waste(MSW) in most Asian countries. Leachate from landfill presents a strong wastewater that needs intensive treatment before discharge. Direct recycling was proposed as an effective alternative for leachate treatment by taking the landfill as a bioreactor. This process was proved not only considerably reducing the pollution potential of leachate, but also enhancing organic degradation in the landfill. However, as this paper shows, although direct leachate recycling was effective in landfilled MSW with low food waste fraction (3.5%, w/w), it failed in MSW containing 54% food waste, as normally noted in Asian countries. The initial acid stuck would inhibit methanogenesis to build up, hence strong leachate was yielded from landfill to threaten the quality of receiving water body. We demonstrated the feasibility to use an assisted bioreactor landfill, with a well-decomposed refuse layer as ex-situ anaerobic digester to reducing COD loading in leachate. By doing so, the refuse in simulated landfill column (2.3 m high) could be stabilized in 30 weeks while the COD in leachate reduced by 95%(61000 mg/L to 3000 mg/L). Meanwhile, the biogas production was considerably enhanced, signaling by the much greater amount and much higher methane content in the biogas. 展开更多
关键词 BIOREACTOR landfill leachate recycling ORGANICS enhancement leachate PRETREATMENT
下载PDF
A simulation analysis of the migration and transformation of pollutants contained in landfill leachate 被引量:4
16
作者 WANGHong-qi TIANKai-ming +2 位作者 QIYong-qiang CHENJia-jun WANGYa-nan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第6期827-835,共9页
A dynamic composite model for a soil-water system that can be used to simulate the movement of leachate from a landfill. The composite model includes nine sub-models that trace water movement and the migration and tra... A dynamic composite model for a soil-water system that can be used to simulate the movement of leachate from a landfill. The composite model includes nine sub-models that trace water movement and the migration and transformation of five pollutants(organic N, NH - 4, NO - 3, NO - 2, and Cl -) in saturated and unsaturated soil. The model to simulate the movement of leachate from a landfill in Laogang Town, Shanghai City was used. In this application, the values for the model parameters were obtained by performing a laboratory simulation experiment of water movement and pollutant migration and transformation in soil columns. Soil and leachate obtained from the landfill site and its vicinity were used in the laboratory experiments. The model was then used to simulate leachate movement and pollutant activity during the ten-year period when the landfill was in operation and in the twenty-year period following its closure. The simulation results revealed that the leachate migrated into the groundwater at the rate of 90—100 meters per year. This model can be applied in the design of future landfills in China for the purpose of assessing and forecasting leachate plumes. 展开更多
关键词 simulation leachate landfill pollutant migration pollutant transformation mathematical model
下载PDF
Removal of high concentrated ammonia nitrogen from landfill leachate by landfilled waste layer 被引量:3
17
作者 GUOHui-dong HEPin-jing SHAOLi-ming LIGuo-jian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期802-807,共6页
The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste c... The landfill of municipal solid waste(MSW) could be regarded as denitrification reactor and involved in ammonia nitrogen biological removal process. In this research, the process was applied to municipal solid waste collected in Shanghai, China, which was characterized by high food waste content. The NH + 4 removal efficiency in the system of SBR nitrifying reactor followed by fresh and matured landfilled waste layer in series was studied. In the nitrifying reactor, above 90% of NH + 4 in leachate was oxidized to NO - 2 and NO - 3. Then high concentrated NO - 2 and NO - 3 were removed in the way of denitrification process in fresh landfilled waste layer. At the same time, degradation of fresh landfilled waste was accelerated. Up to the day 120, 136.5 gC/(kg dry waste) and 17.9 gN/(kg dry waste) were converted from waste layer. It accounted for 50.15% and 86.89% of the total carbon and nitrogen content of preliminary fresh waste, which was 4.42 times and 5.17 times higher than that of reference column respectively. After filtering through matured landfilled waste, BOD 5 concentration in leachate dropped to below 100 mg/L, which would not affect following nitrification adversely. Because the matured landfilled waste acted as a well methanogenic reactor, 23% of carbon produced accumulatively from fresh landfilled waste degradation was converted into CH 4. 展开更多
关键词 landfill leachate recirculation ammonia biological removal fresh landfilled waste matured landfilled waste
下载PDF
Effect of leachate recycling and inoculation on the biochemical characteristics of municipal refuse in landfill bioreactors 被引量:4
18
作者 ShenDS HeR 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期406-412,共7页
Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The resu... Activity development of key groups of enzymes involved in municipal refuse decomposition was measured in laboratory landfill bioreactors with and without leachate recycling and inoculation for about 210 days. The results showed that the enzymes (amylase, protease, cellulase, lipase and pectinase) were present in fresh refuse but at low values and positively affected by leachate recycling and refuse inoculation. The total average of cellulase activity in digesters D3 operated with leachate recycling but no inoculation, D4 and D5 operated with leachate recycling and inoculation was much higher than that in digesters D1 and D2 without leachate recycling and inoculation by 88%—127%, 117%—162% and 64%—98%. The total average of protease activity was higher in digester D4 than that in digesters D1, D2, D3 and D5 by 63%, 39%, 24% and 24%, respectively, and the positive effect of leachate recycling and inoculation on protease activity of landfilled refuse mainly was at the first two months. The total average of amylase activity was higher in digesters D3, D4 and D5 than that in digesters D1 and D2 by 83%—132%, 96%—148% and 81%—129%. During the early phase of incubation, the stimulatory effect of inoculation on lipase activity was measured, but refuse moisture was the main factor affecting lipase activity of landfilled refuse. The inoculation, initial and continuous inoculation of microorganisms existing in leachate, was the mainly stimulatory factor affecting pectinase activity of landfilled refuse. 展开更多
关键词 municipal refuse landfill bioreactor leachate recycle inoculation enzyme activity biochemical characteristics
下载PDF
Application of Catalytic Wet Air Oxidation to Treatment of Landfill Leachate on Co/Bi Catalyst 被引量:4
19
作者 LIHai-sheng LIULiang +3 位作者 ZHANGRong DONGDe-ming LIUHong-liang LIYu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第6期711-716,共6页
Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the T... Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the TOC and COD Cr removal rates were studied. The degradation kinetics of landfill leachate was also investigated and an exponential experiential model consisting of four influential factors was established to describe the reduction of the organic compounds in the landfill leachate. Meanwhile, the GC-MS technique was used to detect the components of the organic intermediates for the inference of the decomposition mechanisms of the organic compounds in landfill leachate. The results reveal that the reaction temperature and the catalyst dosage are the most important factors affecting the degradation reaction of the organic compounds and that the principal intermediates confirmed by GC-MS are organic acids at a percentage of more than 88% with no aldehydes or alcohols detected. The decomposition mechanisms of the organic compounds in landfill leachate were inferred based on the GC-MS information as follows: the activated gas phase O 2 captured the hydrogen of the organic pollutants to produce free radicals, which then initiated the catalytic reaction. So most of the organic compounds were oxidized into CO 2 and H 2O ultimately. In general, catalytic wet air oxidation over catalyst Co 3O 4/Bi 2O 3 was a very promising technique for the treatment of landfill leachate. 展开更多
关键词 Catalytic wet air oxidation Organic compound landfill leachate Decomposition mechanism
下载PDF
Assessment of Heavy Metals and Organics in Municipal Solid Waste Leachates from Landfills with Different Ages in Jordan 被引量:3
20
作者 Malyuba Abu-Daabes Hani Abu Qdais Hatem Alsyouri 《Journal of Environmental Protection》 2013年第4期344-352,共9页
A comprehensive assessment of heavy metals and organic content was performed for leachates produced from a number of old and new landfills in Jordanover 9 month in efforts to set a framework for treatment regulations.... A comprehensive assessment of heavy metals and organic content was performed for leachates produced from a number of old and new landfills in Jordanover 9 month in efforts to set a framework for treatment regulations. All leachates were basic (pH = 7 - 9) and have high electric conductivity and high organic contents (COD = 3000 - 500,000 mg/L, TOC= 500 - 21,000 mg/L). The organic content was inversely proportional to the age of landfill. Heavy metals analysis showed no significant threat of Co, Zn, Pb and Al in any site. Meanwhile, the concentrations of Cr, Mn, Ni, Cd and As were high, exceeding local and international standard limits. Typical physical, chemical and biological treatments can be employed to upgrade the leachates of the active Ghabawi and Akaider sites. Whereas for the high organic strength of Russeifeh, an adsorption treatment by activated carbon is recommended. 展开更多
关键词 landfill leachate HEAVY Metals Organic JORDAN Ghabawi Akaider Russeifah
下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部