Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, p...Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.展开更多
In this paper, cold simulation experiments and numerical calculations are conducted to predict 3 D flow field aerodynamics for an oil furnace after being retrofitted due to its fuel variation. K ε model and SIMPLE ...In this paper, cold simulation experiments and numerical calculations are conducted to predict 3 D flow field aerodynamics for an oil furnace after being retrofitted due to its fuel variation. K ε model and SIMPLE program under body fit coordination (BFC) system, in which TTM non orthogonal method is used to control the irregular geometric boundary, are adopted to solve the control equations. Model tests are conducted to check the calculation results, showing that they are in agreement with each other. Three different alternatives with different side window locations are also calculated to optimize the designs. The field retrofitting results show that the combination of cold tests with numerical calculations has prosperous application in retrofitting or renewing medium and small boilers.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigat...A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.展开更多
We propose a novel inverse-free neurodynamic approach (NIFNA) for solving absolute value equations (AVE). The NIFNA guarantees global convergence and notably improves convergence speed by achieving fixed-time converge...We propose a novel inverse-free neurodynamic approach (NIFNA) for solving absolute value equations (AVE). The NIFNA guarantees global convergence and notably improves convergence speed by achieving fixed-time convergence. To validate the theoretical findings, numerical simulations are conducted, demonstrating the effectiveness and efficiency of the proposed NIFNA.展开更多
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have alread...The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.展开更多
Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties o...Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.展开更多
The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conducti...The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conductivity as function of temperature and dealing with the latent heat of phase transformation and boundary conditions. The results show that the probability of absolute error less 2℃ between the calculated and measured values in temperature field calculation reaches above 80%.展开更多
Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating ...Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.展开更多
In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary...In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.展开更多
Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed, It is suitable to calculate wave propagation in water areas with an arbitrari...Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed, It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/L(0)less than or equal to1. By the application of the completely implicit stagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical Solutions and physical models.展开更多
Impulse thruster is a kind of actuator used for trajectory correction or attitude control of some in-flight munitions and vehicles.A simple mathematical model was set up to model interior characteristics of an impulse...Impulse thruster is a kind of actuator used for trajectory correction or attitude control of some in-flight munitions and vehicles.A simple mathematical model was set up to model interior characteristics of an impulse thruster.With this model,effects of some key parameters on interior performances of the impulse thruster were studied.Results show that action time is affected significantly by nozzle throat diameter and volume of combustion chamber,while output impulse is sensitive to charge particle diameter and nozzle throat diameter.Through numerical calculation,the ranges of the optimized values for some key parameters were obtained.展开更多
The temperature field of FGH95 alloy droplet atomized by plasma rotatingelectrode processing (PREP) during solidification has been calculated through numerical analysisbased on equivalent sensible heat capacity method...The temperature field of FGH95 alloy droplet atomized by plasma rotatingelectrode processing (PREP) during solidification has been calculated through numerical analysisbased on equivalent sensible heat capacity method. And thus the relational curves among temperaturegradient of solid-liquid interface, moving velocity of solid-liquid interface and solid fractionduring solidification have been presented. The results indicate that the relation between averagetemperature gradient of solid-liquid interface and droplet size, and the relation between averagemoving velocity of solid-liquid interface and droplet size can be expressed during solidification.展开更多
In this note we consider some basic, yet unusual, issues pertaining to the accuracy and stability of numerical integration methods to follow the solution of first order and second order initial value problems (IVP). I...In this note we consider some basic, yet unusual, issues pertaining to the accuracy and stability of numerical integration methods to follow the solution of first order and second order initial value problems (IVP). Included are remarks on multiple solutions, multi-step methods, effect of initial value perturbations, as well as slowing and advancing the computed motion in second order problems.展开更多
Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dred...Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.展开更多
The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in I...The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in In-containment Refueling Water Storage Tank (IRWST) was carried out. The single-tube coupling model three-dimensional natural circulation in the IRWST was simulated numerically using Fluent. The heat transfer and flow characteristics of the fluid in IRWST were obtained. The comparison of the results between theoretical arithmetic and numerical simulation showed that the theoretical calculation method is suitable for the heat transfer calculation of PRHR HX.展开更多
On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian res...On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.展开更多
The information of seismic response spectra is key to many problems concerned with aseismic structure and is also helpful for earthquake disaster relief if it is generated in time when earthquake happens. While curren...The information of seismic response spectra is key to many problems concerned with aseismic structure and is also helpful for earthquake disaster relief if it is generated in time when earthquake happens. While current numerical calculation methods suffer from poor precision, especially in frequency band near Nyquist frequency, we present a set of improved parameters for precision improvement. It is shown that precision of displacement and velocity response spectra are both further improved compared to current numerical algorithms. A uniform fitting formula is given for computing these parameters for damping ratio range of 0.01-0.9, quite convenient for practical application.展开更多
Before diagnosed by DGA (dissolved gas analysis) methods, gas caution values, which index the level of gas formation, must be used to evaluate the possibility of incipient faults to reduce the misdiagnosis in the norm...Before diagnosed by DGA (dissolved gas analysis) methods, gas caution values, which index the level of gas formation, must be used to evaluate the possibility of incipient faults to reduce the misdiagnosis in the normal state. However, the calculation of these values is now only based on cumulative percentile method without taking into account operating conditions. To overcome this disadvantage, a new approach to calculate the transformer caution values is presented. This approach is based on statistical distribution and correlation analysis, and it takes the individual variation and fluctuation caused by internal and external factors into consideration. Then 6550 transformer DGA data collected from North China Power Grid are analyzed in this paper. The results show that the volume fraction of TH (total hydrocarbon) approximately obeys normal distribution when the 3-sigma rule is used to calculate its caution value. The volume fraction of CO has a strong positive correlation with oil temperature. For H2, the negative correlation with oil temperature is significant when the volume fraction is not very low. The caution value curves for CO and H2 are obtained by regression analyses. Thus, the gas caution values/curves obtained using the new method are not always constant, but vary with oil temperature, which is an advantage of the proposed method compared with cumulative percentile method. The variation of gas caution values/curves also reflects the influence of the external factors, for instance, va- rying with monitoring time ensures that the gas caution values are always consistent with operating status.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.40874052)the Key Laboratory of Geo-detection (China University of Geosciences,Beijing),Ministry of Education
文摘Up to now, the primary method for studying critical porosity and porous media are experimental measurements and data analysis. There are few references on how to numerically calculate porosity at the critical point, pore fluid-related parameters, or framework-related parameters. So in this article, we provide a method for calculating these elastic parameters and use this method to analyze gas-bearing samples. We first derive three linear equations for numerical calculations. They are the equation of density p versus porosity Ф, density times the square of compressional wave velocity p Vp^2 versus porosity, and density times the square of shear wave velocity pVs^2 versus porosity. Here porosity is viewed as an independent variable and the other parameters are dependent variables. We elaborate on the calculation steps and provide some notes. Then we use our method to analyze gas-bearing sandstone samples. In the calculations, density and P- and S-velocities are input data and we calculate eleven relative parameters for porous fluid, framework, and critical point. In the end, by comparing our results with experiment measurements, we prove the viability of the method.
文摘In this paper, cold simulation experiments and numerical calculations are conducted to predict 3 D flow field aerodynamics for an oil furnace after being retrofitted due to its fuel variation. K ε model and SIMPLE program under body fit coordination (BFC) system, in which TTM non orthogonal method is used to control the irregular geometric boundary, are adopted to solve the control equations. Model tests are conducted to check the calculation results, showing that they are in agreement with each other. Three different alternatives with different side window locations are also calculated to optimize the designs. The field retrofitting results show that the combination of cold tests with numerical calculations has prosperous application in retrofitting or renewing medium and small boilers.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.
基金the National Natural Science Foundation of China(Research Project No.52169018).
文摘A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance.
文摘We propose a novel inverse-free neurodynamic approach (NIFNA) for solving absolute value equations (AVE). The NIFNA guarantees global convergence and notably improves convergence speed by achieving fixed-time convergence. To validate the theoretical findings, numerical simulations are conducted, demonstrating the effectiveness and efficiency of the proposed NIFNA.
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
文摘The paper presents analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV(particle image velocimetry)and pressure probe traverses.PIV measurements have already been performed at middle height inside one diffuser channel passage for a given speed of rotation and various mass flow rates.These results have been already presented in several previous communications.New experiments have been performed using a three-hole pressure probe traverses from hub to shroud diffuser width at different radial locations between the two diffuser geometrical throats.Numerical simulations are also realized with the commercial codes Star CCM+7.02.011 and CFX.Frozen rotor and fully unsteady calculations of the whole pump have been performed.Comparisons between numerical results,previous experimental PIV results and new probe traverses one's are presented and discussed for one mass flow rate.In this respect,a first attempt to take into account fluid leakages between the rotating and fixed part of the pump has been checked since it may affects the real flow structure inside the diffuser.
基金Sponsored by National Nature Science Foundation of China ( 51179195)National Defense Foundation of China ( 513030203-02)
文摘Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.
文摘The model established in this paper for calculating the unsteady temperature field, in which physical parameters varies with temperatures, is simplified as compared with the classical one by defining the heat conductivity as function of temperature and dealing with the latent heat of phase transformation and boundary conditions. The results show that the probability of absolute error less 2℃ between the calculated and measured values in temperature field calculation reaches above 80%.
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.
文摘In this paper, authors discuss the numerical methods of general discontinuous boundary value problems for elliptic complex equations of first order, They first give the well posedness of general discontinuous boundary value problems, reduce the discontinuous boundary value problems to a variation problem, and then find the numerical solutions of above problem by the finite element method. Finally authors give some error-estimates of the foregoing numerical solutions.
基金This research was financially supported by China National Key Basic Research Project "Circulation Principal and Mathematic Model" (Grant No. 1999043810) Guangdong Science and Technology Innovation Project: "Disaster Diagnoses of Sea Walls" (99B07102G)
文摘Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed, It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/L(0)less than or equal to1. By the application of the completely implicit stagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical Solutions and physical models.
基金Sponsored by the Ministerial Level Advanced Research Foundation(51305080302)
文摘Impulse thruster is a kind of actuator used for trajectory correction or attitude control of some in-flight munitions and vehicles.A simple mathematical model was set up to model interior characteristics of an impulse thruster.With this model,effects of some key parameters on interior performances of the impulse thruster were studied.Results show that action time is affected significantly by nozzle throat diameter and volume of combustion chamber,while output impulse is sensitive to charge particle diameter and nozzle throat diameter.Through numerical calculation,the ranges of the optimized values for some key parameters were obtained.
基金This word was financially supported by the National Program Committee of China(No.95-YJ-20).]
文摘The temperature field of FGH95 alloy droplet atomized by plasma rotatingelectrode processing (PREP) during solidification has been calculated through numerical analysisbased on equivalent sensible heat capacity method. And thus the relational curves among temperaturegradient of solid-liquid interface, moving velocity of solid-liquid interface and solid fractionduring solidification have been presented. The results indicate that the relation between averagetemperature gradient of solid-liquid interface and droplet size, and the relation between averagemoving velocity of solid-liquid interface and droplet size can be expressed during solidification.
文摘In this note we consider some basic, yet unusual, issues pertaining to the accuracy and stability of numerical integration methods to follow the solution of first order and second order initial value problems (IVP). Included are remarks on multiple solutions, multi-step methods, effect of initial value perturbations, as well as slowing and advancing the computed motion in second order problems.
基金Supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51021004)National Natural Science Foundation of China(No. 50879056)National Key Technologies R&D Program in the 12th Five-Year Plan of China(No. 2011BAB10B06)
文摘Prediction of channel dredging volume is critical for project cost estimation. However, many proposed approximate methods are not accurate. This paper presents a novel numerical method to accurately calculate the dredg- ing volume using a 3D stratum model (DSM) and a channel surface model. First, the 3D DSM is constructed rapidly yet accurately from non-uniform rational B-splines (NURBS) surfaces through Boolean operation between a physical terrain model and a stratum surfaces model. Then, a parametric channel surface model is built from cross-section data and a channel center line using code implemented in the VC++ programming language. Finally, the volumes of different types of physical stratums can be calculated automatically and hierarchically to determine the dredging volume. Practical application shows that the DSM method is more precise and faster compared to the section method, and that the implementation of the developed software provides an interactive graphical user interface and visual presentation.
文摘The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in In-containment Refueling Water Storage Tank (IRWST) was carried out. The single-tube coupling model three-dimensional natural circulation in the IRWST was simulated numerically using Fluent. The heat transfer and flow characteristics of the fluid in IRWST were obtained. The comparison of the results between theoretical arithmetic and numerical simulation showed that the theoretical calculation method is suitable for the heat transfer calculation of PRHR HX.
基金Project supported by the National Natural Science Foundation of China
文摘On the basis of a three-dimensional weakly nonliear theory of Lagrangian residual current in the Baroclinic shallow seas, a diagnostic numerical calculation of wind-driven, thermohaline and tide-induced Lagrangian residual current in the Bohai Sea is made. The model involves the Richardson number in the eddy viscosity coefficient, wind, thcrmolialine and tidal effects in the focing terms. The runoff of the Huanghe River and a part of the Huanghai Warm Water coming from the Huanghai Sea through the Bohai Sea Strait is also considered. The velocity-splitting method is adopted. The wind-driven circu lation, thermohaline circulation and the tide-induced Lagrangian residual circulation are also obtained individually and analysed. The dynamics of the three main eddies in the Lagrangian mean circulation is discussed. Finally, the numerical result is partly verified with the observed data.
基金supported by Science for Earthquake Resilience (XH12032)
文摘The information of seismic response spectra is key to many problems concerned with aseismic structure and is also helpful for earthquake disaster relief if it is generated in time when earthquake happens. While current numerical calculation methods suffer from poor precision, especially in frequency band near Nyquist frequency, we present a set of improved parameters for precision improvement. It is shown that precision of displacement and velocity response spectra are both further improved compared to current numerical algorithms. A uniform fitting formula is given for computing these parameters for damping ratio range of 0.01-0.9, quite convenient for practical application.
基金Project supported by National Basic Research Program of China (973 Program) (2009CB724508)
文摘Before diagnosed by DGA (dissolved gas analysis) methods, gas caution values, which index the level of gas formation, must be used to evaluate the possibility of incipient faults to reduce the misdiagnosis in the normal state. However, the calculation of these values is now only based on cumulative percentile method without taking into account operating conditions. To overcome this disadvantage, a new approach to calculate the transformer caution values is presented. This approach is based on statistical distribution and correlation analysis, and it takes the individual variation and fluctuation caused by internal and external factors into consideration. Then 6550 transformer DGA data collected from North China Power Grid are analyzed in this paper. The results show that the volume fraction of TH (total hydrocarbon) approximately obeys normal distribution when the 3-sigma rule is used to calculate its caution value. The volume fraction of CO has a strong positive correlation with oil temperature. For H2, the negative correlation with oil temperature is significant when the volume fraction is not very low. The caution value curves for CO and H2 are obtained by regression analyses. Thus, the gas caution values/curves obtained using the new method are not always constant, but vary with oil temperature, which is an advantage of the proposed method compared with cumulative percentile method. The variation of gas caution values/curves also reflects the influence of the external factors, for instance, va- rying with monitoring time ensures that the gas caution values are always consistent with operating status.