Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the non- equidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic...Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the non- equidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic Hermite spline is put forward to improve the accuracy of derivative to the accumulated generating operation (AGO) series. Hopefully, it is worth stressing that the proposed NGM(1,1) model is particularly useful for predicting uncertainty data. Qualitative and quantitative comparisons between the proposed approach and other well-known algorithms are carried out through computer simulations on synthetic as well as natural signals. Simulation results demonstrate the proposed method can reduce end effects and improve the decomposition results of EMD.展开更多
In order to deal with the non-stationary characteristics of blasting vibration signals and the end issue in the empirical mode decomposition(EMD), an improved endpoint continuation method is proposed. First, the linea...In order to deal with the non-stationary characteristics of blasting vibration signals and the end issue in the empirical mode decomposition(EMD), an improved endpoint continuation method is proposed. First, the linear continuation method of extreme points is used to determine the extremum of the signal endpoint fast. Secondly, the extreme points of transition section outside the signal ends are obtained by a mirror continuation method of extreme points, and then the envelope and continuation curve of the transition section of the signal are constructed. Lastly, the sinusoid of the stationary section outside the signal is constructed to achieve the continuation curve from the transition section to the stationary section. Based on the "singular extreme points" phenomenon of blasting vibration signal, the negative maxima and positive minimum are eliminated, then the maximum and minimum are guaranteed to appear at intervals. Thus,the number of iterations is reduced and the instability of EMD decomposition is improved. The calculation formula of amplitude, cycle and initial phase are given for the transition section and stationary section outside the signal. The endpoint processing effect of the simulated signal and the measured blasting vibration signal show that the improved endpoint continuation method can suppress the signal endpoint effect well.展开更多
Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method d...Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method divides the signal into many wavelets,and it changes the initial wavelet length to select the best initial wavelet that has the minimum error and maximum number of matching seed wavelets,and the wavelet slopes are used for pre-matching and secondary matching to speed up the matching speed.Then,folded self-adaptive threshold is used to select multiple seed wavelets,and finally the end waveform is predicted and expanded according to the adaptive filter method.The proposed method is used to analyze the non-stationary nonlinear simulation signal and experimental signal,and it is compared with the mirror extension and RBF extension methods.The orthogonality index and similarity index of the EMD results of the extended signal after the proposed method are better than those of the other methods.The results show that the proposed method can better constrain the end effect,and has certain validity,accuracy and stability in solving the end effect problem.展开更多
The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on...The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on the structural component and may cause both local and structural failure. In this study,an experimental study was conducted to investigate the dynamic responses of RC beams under doubleend-initiated close-in explosions. The experimental results show that the distribution of blast loads generated by the double-end-initiated explosion is much more non-uniform than those generated by single-point detonation, which is caused by the self-Mach-reflection effects. A 3 D finite element model was developed and validated in LS-DYNA by employing the modified K&C model. Intensive numerical calculations were conducted to study the influences of the initiation way, scaled distance and longitudinal reinforcement ratio on the dynamic responses and failure modes of RC beams. Numerical results show that the RC beam suffers greater damage as the cylindrical explosive is detonated at its double ends than the scenario in which the cylindrical explosive is detonated at its central point. RC beams mainly suffer flexural failure and flexure-shear failure under the double-end close-in explosion, and the failure modes of RC beams change from the flexural damage to flexure-shear damage as the scaled distance or the longitudinal reinforcement ratio decreases. The direct shear failure mode is not usually observed in the double-end-initiated explosion, since the intense blast loads is basically concentrated in the midspan of RC beam, which is due to self-Mach-reflection enhancement.展开更多
An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VC...An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VCG) is suitable for multi-mode multi-standard( MMMS) applications. An equivalent local oscillator( LO) frequency-tunable high-Q band-pass filter( BPF) at low noise amplifier( LNA) output is used to reject the out-of-band interference signals. Base-band( BB) capacitor of the mixer is variable to obtain 15 kinds of intermediate frequency( IF) bandwidth( BW). The proposed passive mixer with LNA is implemented in TSMC 0. 18μm RF CMOS process and operates from 0. 5 to 2. 5 GHz with measured maximum out-of-band rejection larger than 40 d B. The measured VCG of the front-end can be changed from 5 to 17 d B; the maximum input intercept point( IIP3) is0 d Bm and the minimum noise figure( NF) is 3. 7 d B. The chip occupies an area of 0. 44 mm^2 including pads.展开更多
基金supported by the National Natural Science Foundation of China (60975009 61171197+6 种基金 61174016)the Innovative Team Program of the NNSF of China (61021002)the National Basic Research Program of China (973 Program) (2012CB720000)the Shandong Provincial Natural Science Foundation (ZR2011FM005)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (BS2010DX001)the Research Fund for the Doctoral Program of Higher Education of China (20092302110037 20102302110033)
文摘Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the non- equidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic Hermite spline is put forward to improve the accuracy of derivative to the accumulated generating operation (AGO) series. Hopefully, it is worth stressing that the proposed NGM(1,1) model is particularly useful for predicting uncertainty data. Qualitative and quantitative comparisons between the proposed approach and other well-known algorithms are carried out through computer simulations on synthetic as well as natural signals. Simulation results demonstrate the proposed method can reduce end effects and improve the decomposition results of EMD.
基金Supported by the National Natural Science Foundation of China(51374212)
文摘In order to deal with the non-stationary characteristics of blasting vibration signals and the end issue in the empirical mode decomposition(EMD), an improved endpoint continuation method is proposed. First, the linear continuation method of extreme points is used to determine the extremum of the signal endpoint fast. Secondly, the extreme points of transition section outside the signal ends are obtained by a mirror continuation method of extreme points, and then the envelope and continuation curve of the transition section of the signal are constructed. Lastly, the sinusoid of the stationary section outside the signal is constructed to achieve the continuation curve from the transition section to the stationary section. Based on the "singular extreme points" phenomenon of blasting vibration signal, the negative maxima and positive minimum are eliminated, then the maximum and minimum are guaranteed to appear at intervals. Thus,the number of iterations is reduced and the instability of EMD decomposition is improved. The calculation formula of amplitude, cycle and initial phase are given for the transition section and stationary section outside the signal. The endpoint processing effect of the simulated signal and the measured blasting vibration signal show that the improved endpoint continuation method can suppress the signal endpoint effect well.
基金The National Natural Science Foundation of China(No.51675100).
文摘Aimed at the problem of the end effect when using empirical mode decomposition(EMD),a method for constraining the end effect of EMD is proposed based on sequential similarity detection and adaptive filter.The method divides the signal into many wavelets,and it changes the initial wavelet length to select the best initial wavelet that has the minimum error and maximum number of matching seed wavelets,and the wavelet slopes are used for pre-matching and secondary matching to speed up the matching speed.Then,folded self-adaptive threshold is used to select multiple seed wavelets,and finally the end waveform is predicted and expanded according to the adaptive filter method.The proposed method is used to analyze the non-stationary nonlinear simulation signal and experimental signal,and it is compared with the mirror extension and RBF extension methods.The orthogonality index and similarity index of the EMD results of the extended signal after the proposed method are better than those of the other methods.The results show that the proposed method can better constrain the end effect,and has certain validity,accuracy and stability in solving the end effect problem.
基金supported by the National Natural Science Foundations of China(Nos. 51622812, and 51427807)National Basic Research Program of China(No. 2015CB058003)China Postdoctoral Science Foundation(No. 2017M613379)
文摘The reinforced concrete(RC) structural component might suffer a great damage under close-in explosion.Different from distant explosions, blast loads generated by the close-in explosion are non-uniformly distributed on the structural component and may cause both local and structural failure. In this study,an experimental study was conducted to investigate the dynamic responses of RC beams under doubleend-initiated close-in explosions. The experimental results show that the distribution of blast loads generated by the double-end-initiated explosion is much more non-uniform than those generated by single-point detonation, which is caused by the self-Mach-reflection effects. A 3 D finite element model was developed and validated in LS-DYNA by employing the modified K&C model. Intensive numerical calculations were conducted to study the influences of the initiation way, scaled distance and longitudinal reinforcement ratio on the dynamic responses and failure modes of RC beams. Numerical results show that the RC beam suffers greater damage as the cylindrical explosive is detonated at its double ends than the scenario in which the cylindrical explosive is detonated at its central point. RC beams mainly suffer flexural failure and flexure-shear failure under the double-end close-in explosion, and the failure modes of RC beams change from the flexural damage to flexure-shear damage as the scaled distance or the longitudinal reinforcement ratio decreases. The direct shear failure mode is not usually observed in the double-end-initiated explosion, since the intense blast loads is basically concentrated in the midspan of RC beam, which is due to self-Mach-reflection enhancement.
基金Supported by the National Basic Research Program of China(No.2010CB327404)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘An adjustable mixer for surface acoustic wave( SAW)-less radio frequency( RF) front-end is presented in this paper. Through changing the bias voltage,the presented mixer with reconfigurable voltage conversion gain( VCG) is suitable for multi-mode multi-standard( MMMS) applications. An equivalent local oscillator( LO) frequency-tunable high-Q band-pass filter( BPF) at low noise amplifier( LNA) output is used to reject the out-of-band interference signals. Base-band( BB) capacitor of the mixer is variable to obtain 15 kinds of intermediate frequency( IF) bandwidth( BW). The proposed passive mixer with LNA is implemented in TSMC 0. 18μm RF CMOS process and operates from 0. 5 to 2. 5 GHz with measured maximum out-of-band rejection larger than 40 d B. The measured VCG of the front-end can be changed from 5 to 17 d B; the maximum input intercept point( IIP3) is0 d Bm and the minimum noise figure( NF) is 3. 7 d B. The chip occupies an area of 0. 44 mm^2 including pads.