A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most...A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.展开更多
posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer t...posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form.展开更多
A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also...A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.展开更多
The double singularities induced by bifurcation point and boundary layer in non-dimensionalized nonlinear boundary-layer Karman-Donnell equations for axially compressed stiffened cylindrical shells can be treated by K...The double singularities induced by bifurcation point and boundary layer in non-dimensionalized nonlinear boundary-layer Karman-Donnell equations for axially compressed stiffened cylindrical shells can be treated by Koiter-boundary layer singular perturbation method in this paper. It is demonstrated that the method has high computing efficiency and accuracy based on the analysis of AS-2 shell, and some new conclusions can be directly obtained from the perturbation formulas which are very well in agreement with experimental phenomenon of axially compressed stiffened cylindrical shells.展开更多
A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer...A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form.展开更多
文摘A Donnell type theory is developed for finite deflection of closely stiffened truncated laminated composite conical shells under arbitrary loads by using the variational calculus and smeared-stiffener theory. The most general bending-stretching coupling and the effect of eccentricity of stiffeners are considered. The equilibrium equations, boundary conditions and the equation of compatibility are derived. The new equations of the mixed-type of stiffened laminated composite conical shells are obtained in terms of the transverse deflection and stress function. The simplified equations are also given for some commonly encountered cases.
文摘posthuckling analysis is presented for the stilTened cylindrical shell of finite length subjected to combined loading of external liquid pressure and axial compression. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stifl'cner' approach is adopted for the stiffencrs. In the analysis a singular perturbation technique is used (o determine the interactive buckling loads and the postbuckling paths. Numerical examples cover the performance of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results arc presented in the dimcnsionless graphical form.
基金financially supported by the Science Fund for Outstanding Youth of the National Natural Science Foundation of China(Grant No.51222904)the National Security Major Basic Research Program of China(Grant No.613157)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.0939002)the National Natural Science Foundation of China(Grant No.51209052)
文摘A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.
文摘The double singularities induced by bifurcation point and boundary layer in non-dimensionalized nonlinear boundary-layer Karman-Donnell equations for axially compressed stiffened cylindrical shells can be treated by Koiter-boundary layer singular perturbation method in this paper. It is demonstrated that the method has high computing efficiency and accuracy based on the analysis of AS-2 shell, and some new conclusions can be directly obtained from the perturbation formulas which are very well in agreement with experimental phenomenon of axially compressed stiffened cylindrical shells.
文摘A postbuckling analysis is presented for a stiffened cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The 'smeared stiffener' approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, stringer and ring stiffened cylindrical shells. Typical results are presented in dimensionless graphical form.