【目的】糖外排转运蛋白(sugars will eventually be exported transporters,SWEETs)在植物生长发育过程中发挥重要作用,解析SWEETs基因在枸杞果实发育过程中对糖积累作用,为进一步揭示SWEETs基因在枸杞果实发育过程中的作用提供参考。...【目的】糖外排转运蛋白(sugars will eventually be exported transporters,SWEETs)在植物生长发育过程中发挥重要作用,解析SWEETs基因在枸杞果实发育过程中对糖积累作用,为进一步揭示SWEETs基因在枸杞果实发育过程中的作用提供参考。【方法】用生物信息学方法对枸杞SWEET基因(LbaSWEETs)进行全基因组鉴定,并用已发表的转录数据分析LbaSWEETs在果实发育时期的基因表达情况。【结果】枸杞SWEET基因家族共有37个成员,随机分布于10条染色体上,分别编码152~621个氨基酸,蛋白质分子质量为16.87~69.97 kD,等电点为4.96~9.86。亚细胞定位预测位于叶绿体或质膜,大多数含有7个跨膜螺旋。系统进化分析发现,37个LbaSWEETs蛋白可分为4个亚群,每个亚群的基因结构和保守基序组成相似。启动子元件分析表明:Lba-SWEETs基因启动子富含大量激素响应、逆境胁迫和生长发育响应元件。转录组数据和qRT-PCR分析表明:LbaSWEET9和LbaSWEET29基因表达量随果实成熟呈现显著增加。相关性分析结果表明,LbaSWEET9和LbaSWEET29基因表达量与果糖含量呈显著正相关。【结论】LbaSWEET9和LbaSWEET29基因是果糖积累的关键基因。展开更多
SWEET(sugars will eventually be exported transporter)是一类介导蔗糖或己糖通过顺浓度梯度被动扩散跨细胞膜转运的新型糖转运蛋白。植物SWEET蛋白包括7个跨膜结构域,其中包含2个MtN3/Saliva结构域,可分为4个进化分支。SWEET转运蛋...SWEET(sugars will eventually be exported transporter)是一类介导蔗糖或己糖通过顺浓度梯度被动扩散跨细胞膜转运的新型糖转运蛋白。植物SWEET蛋白包括7个跨膜结构域,其中包含2个MtN3/Saliva结构域,可分为4个进化分支。SWEET转运蛋白在多种生理和生化过程中发挥着关键作用,包括韧皮部装载、激素运输、营养和生殖生长等。结合当前SWEET转运蛋白的研究进展,重点总结了SWEET的发现、蛋白结构及其在糖转运中的生物学功能,指出目前植物SWEET基因研究面临的问题,并对未来SWEET蛋白的研究重点进行了展望:1)探究SWEET蛋白的底物识别机制;2)挖掘提高作物产量和品质的关键SWEET基因;3)利用SWEET基因编辑和磷酸化等策略改良作物产量和品质。展开更多
【目的】挖掘参与油茶糖代谢及逆境响应的糖外排转运子(sugars will eventually be exported transporters,SWEETs)。【方法】利用生物信息学方法分析油茶SWEETs家族的基因结构、蛋白基序、染色体定位、共线性关系、启动子区顺式作用元...【目的】挖掘参与油茶糖代谢及逆境响应的糖外排转运子(sugars will eventually be exported transporters,SWEETs)。【方法】利用生物信息学方法分析油茶SWEETs家族的基因结构、蛋白基序、染色体定位、共线性关系、启动子区顺式作用元件及上游调控因子等,并利用RT-qPCR分析CoSWEETs在不同时期、不同组织及不同逆境胁迫下的基因表达情况。【结果】从油茶中鉴定得到14个CoSWEETs基因,不均匀分布于10条染色体上,不同成员间内含子-外显子数目存在差异。根据系统进化关系,14个CoSWEETs可分为 4个分支,均具有1-2个MtN3 保守结构域,同一分支具有相似的基因结构和基序。根据启动子顺式作用元件和上游转录因子预测的分析结果,CoSWEETs启动子中含有多个与生长发育、植物激素和应激相关的调节元件,其表达可能受到ERF、DOF、BBR-BPC、MYB等转录因子的调控。RT-qPCR分析表明大部分CoSWEETs成员在果实和根中高表达,在种子中的表达水平与发育时期相关,并根据低温、高盐和干旱等非生物胁迫下CoSWEETs的表达模式挖掘出CoSWEET1、CoSWEET2、CoSWEET17等响应油茶低温、干旱或高盐胁迫的基因。【结论】CoSWEET基因的表达受到多种激素及转录因子调控,并在油茶种子发育与逆境胁迫响应中发挥重要作用。展开更多
SWEET(Sugars will eventually be exported transporter)蛋白是一类新型糖转运蛋白。本研究基于扁蓿豆(Medicago ruthenica)基因组对MrSWEET基因家族进行了鉴定和生物信息学分析,并通过qPCR初步分析MrSWEET在干旱和寒冷环境下的表达模...SWEET(Sugars will eventually be exported transporter)蛋白是一类新型糖转运蛋白。本研究基于扁蓿豆(Medicago ruthenica)基因组对MrSWEET基因家族进行了鉴定和生物信息学分析,并通过qPCR初步分析MrSWEET在干旱和寒冷环境下的表达模式,以期深入探究扁蓿豆SWEET基因家族在非生物胁迫中的作用。结果表明,扁蓿豆SWEET糖转运蛋白家族共有18个成员,都具有典型的MtN3_saliva/PQ-Loop结构域。系统发育分析表明,其可分为4个进化枝,其中CladeⅠ包括MrSWEET1a、-1b、-2a、-2b、-3a、-3b;CladeⅡ包括MrSWEET4~6;CladeⅢ包括MrSWEET9~15,MrSWEET16~17属于CladeⅣ。所有的MrSWEET成员都含有Motif 1、3、4、5,可能与糖转运蛋白的功能有关。MrSWEET基因启动子区域含有多个与光响应、激素响应和非生物胁迫以及植物生长发育有关的功能元件。在干旱(15%PEG6000)和寒冷(4℃)胁迫下,扁蓿豆根部的MrSWEET基因表达水平相对高于叶片,且根部大多数基因在干旱和寒冷胁迫处理6、12 h时表达量最高;干旱处理下,根部的MrSWEET1a和MrSWEET16相对表达量在3、6、12、24 h和7 d时均高于对照,寒冷处理下根部的MrSWEET16表达量以及处理7 d的MrSWEET1a表达量高于对照,说明其可能参与调控扁蓿豆对干旱和寒冷胁迫的响应。展开更多
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
SWEET(sugars will eventually be exported transporter)蛋白是一类结构保守、不依赖能量的糖转运蛋白,在植物生长发育、响应生物/非生物逆境胁迫等生理过程发挥重要作用。目前,尚未见花生SWEET基因相关报道。本研究首次全基因组挖掘...SWEET(sugars will eventually be exported transporter)蛋白是一类结构保守、不依赖能量的糖转运蛋白,在植物生长发育、响应生物/非生物逆境胁迫等生理过程发挥重要作用。目前,尚未见花生SWEET基因相关报道。本研究首次全基因组挖掘了花生SWEET基因,对其分子特征及表达模式进行了细致分析。结果表明,栽培种花生和2个祖先野生种基因组分别存在55、25、28个SWEET基因,随机不均匀分布在各染色体上。来源于野生种和栽培种的同源基因在染色体位置相近,但也存在个别缺失,这验证了花生野生种和栽培种的进化关系,也暗示了基因组复制加倍过程中存在同源基因的丢失或扩张。基因内含子-外显子数目和位置以及启动子中顺式作用元件种类和数量均存在差异,暗示了花生SWEET基因生物学功能的多样性。系统进化分析将花生SWEET基因分为4个亚家族Clade I~Clade IV,同一亚家族同一分支的基因具有相似的外显子-内含子结构。分析Clevenger等组织表达谱发现部分基因表现为组织优势表达,这为深入了解SWEET基因行使功能部位提供了参考。此外,基于课题组前期发表的干旱和高盐胁迫转录组分析和RT-qPCR验证,我们挖掘出AhSWEET3a和AhSWEET4e等响应花生干旱或高盐胁迫的基因,功能有待进一步鉴定。研究结果为下一步深入分析花生SWEET基因功能提供了理论参考。展开更多
光合作用同化物分配供给是果实和种子发育的主要限制因子,增加蔗糖分配转运到果实和种子是增产优质的潜在策略。SWEET(sugar will eventually be exported transporter)是近年来被鉴定较多的一类糖转运蛋白,该蛋白质通过从源叶运输营养...光合作用同化物分配供给是果实和种子发育的主要限制因子,增加蔗糖分配转运到果实和种子是增产优质的潜在策略。SWEET(sugar will eventually be exported transporter)是近年来被鉴定较多的一类糖转运蛋白,该蛋白质通过从源叶运输营养物质调控库组织发育,参与植物生长发育以及生物和非生物胁迫反应。SWEET蛋白定位于膜结构,属于MtN3家族,通常包含7个跨膜结构域,其中包含2个MtN3/saliva结构域。随着染色体加倍、片段复制和串联复制等,SWEET基因在物种中得到扩张。SWEET4和SWEET39基因是作物驯化改良过程中选择的关键基因;SWEET9蛋白是蜜腺特异性糖转运蛋白,参与植物蜜腺的进化;SWEET16和SWEET17蛋白参与植物根系生长发育;SWEET11和SWEET15蛋白参与植物种子胚乳填充。本文系统综述了SWEET蛋白的结构、数量、分类、亚细胞定位、成员扩张与进化,分析了SWEET蛋白在叶、茎、根系发育,花药发育,花蜜分泌,种子填充和果实发育等植物生长发育中的功能作用,强调了SWEET蛋白在作物改良中的应用,说明增强源库强度对作物产量提高的可持续性具有重要意义。展开更多
【目的】为挖掘参与烟草糖代谢的SWEET(sugar will eventually be exported transported)基因家族成员。【方法】以拟南芥SWEET蛋白为参考,利用生物信息学方法,对栽培烟草的SWEET蛋白家族进行鉴定,分析蛋白理化性质、系统进化、染色体...【目的】为挖掘参与烟草糖代谢的SWEET(sugar will eventually be exported transported)基因家族成员。【方法】以拟南芥SWEET蛋白为参考,利用生物信息学方法,对栽培烟草的SWEET蛋白家族进行鉴定,分析蛋白理化性质、系统进化、染色体定位、基因结构和顺式作用元件,对其在不同组织和不同胁迫处理的表达模式进行检测。【结果】从普通烟草中鉴定到70个可能的SWEET基因,系统发育树将其划分为4个亚家族,大多数烟草SWEET基因在进化过程中经历纯化选择。不同烟草组织的表达模式分析显示,一些烟草SWEET基因具有组织表达特异性。不同胁迫处理的表达模式分析显示,部分烟草SWEET基因在葡萄糖、蔗糖、低温、干旱或者是盐胁迫处理下表达量变化明显。【结论】Ntab0097340和Ntab0727890是烟草植株重要的响应干旱与低温胁迫的基因,本研究为深入研究烟草SWEET基因功能提供有价值的参考信息。展开更多
植物叶片光合作用产生的糖类物质需要经过糖转运蛋白运输到其他器官进而发挥其重要功能。SWEET(sugars will eventually be exported transporters)是一类可实现糖类物质运输的蛋白,对植物生长发育及抵御外界生物和非生物胁迫具有重要...植物叶片光合作用产生的糖类物质需要经过糖转运蛋白运输到其他器官进而发挥其重要功能。SWEET(sugars will eventually be exported transporters)是一类可实现糖类物质运输的蛋白,对植物生长发育及抵御外界生物和非生物胁迫具有重要意义。为分析大豆SWEET基因在荚粒发育过程中以及逆境胁迫下的表达,利用栽培大豆和野生大豆最新公布基因组数据鉴定SWEET基因,然后利用转录组数据分析基因在荚粒发育和抵抗花叶病毒与低磷逆境中的表达。结果表明,栽培大豆Williams82最新版本基因组(Wm82a4v1)有48个SWEET基因,分布于15条染色体,编码蛋白长度为174~354个氨基酸;野生大豆W05基因组有51个SWEET基因,分布于16条染色体,编码蛋白长度为84~392个氨基酸;系统进化树分析显示,99个栽培大豆和野生大豆SWEET基因分为3个亚组。对不同大豆品种转录组数据分析发现,16个SWEET基因在豆荚表达,其中Glyma.06G122200、Glyma.14G159900和Glyma.14G160100等随不同品种豆荚发育进程表达量增加;12个SWEET基因在籽粒表达,其中Glyma.08G025100、Glyma.13G041300和Glyma.14G120300随不同品种籽粒发育进程表达量增加,表明其在豆荚和籽粒发育中具有重要作用。接种大豆花叶病毒后,不同抗性品种间SWEET基因的表达存在较大差别,其中Glyma.08G009900和Glyma.13G264400在抗病品种叶片接种后诱导表达,而在感病品种接种前后表达量没有变化,说明其可能参与大豆抗病反应。对SWEET基因在低磷胁迫前后的表达分析发现,Glyma.04G198400、Glyma.14G160100和Glyma.15G211800等在大豆根系受低磷胁迫诱导表达,可能参与大豆耐低磷反应。栽培大豆SWEET基因单核苷酸多态性(single nucleotide polymorphism,SNP)等位变异分析发现,有43个SWEET基因含有220个非同义突变SNPs,其中103个位于编码蛋白的保守域,可能影响基因功能。研究结果为大豆豆荚和籽粒产量以及抗病耐逆分子育种提供了基因资源。展开更多
甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SW...甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。展开更多
SWEET(Sugars will eventually be exported transporter)是近年来新发现的一类糖转运体,它在维持植物体生长发育、生理代谢、逆境胁迫响应、植物与病原菌互作等方面具有重要作用。截至目前,小黑麦(×Triticosecale)SWEET家族成员...SWEET(Sugars will eventually be exported transporter)是近年来新发现的一类糖转运体,它在维持植物体生长发育、生理代谢、逆境胁迫响应、植物与病原菌互作等方面具有重要作用。截至目前,小黑麦(×Triticosecale)SWEET家族成员尚未被鉴定。因此,本研究基于小黑麦的转录组数据库,通过同源性检索共鉴定出16条TwSWEETs基因,生物信息学分析表明小黑麦TwSWEETs基因家族在进化关系上可分为四个枝,具有较强的保守性。它们含有6~7个跨膜螺旋结构(Transmembrane helices,TMH),共有10个motif,亚细胞定位结果预测显示多数TwSWEETs定位于质膜上。进一步利用qPCR技术分析了TwSWEETs基因在干旱(20%PEG)、寒冷(4℃)胁迫下小黑麦根系和叶片的表达模式,结果表明绝大多数TwSWEET基因的相对表达量在受到胁迫后会显著上调或下调(如TwSWEET2a,TwSWEET6a,TwSWEET12,TwSWEET16),可作为小黑麦响应干旱或寒冷胁迫的候选基因。本研究结果将为深入解析小黑麦TwSWEET基因的功能及其调控小黑麦干旱、寒冷胁迫的响应机制提供理论依据。展开更多
Sustainable weed management strategies are essential to reduce chemical and labor inputs. This study aimed to evaluate the effect of water extracts from sweet potato [Ipomoea batatas (L.) Lamarck] on seed germination ...Sustainable weed management strategies are essential to reduce chemical and labor inputs. This study aimed to evaluate the effect of water extracts from sweet potato [Ipomoea batatas (L.) Lamarck] on seed germination of Ageratum conyzoides L. under controlled conditions. The aqueous was produced from plant parts i.e., roots, stems, and leaves of sweet potato at concentrations of 0.025, 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>. The results showed that the plant parts of sweet potato all contained allelopathic substances, which showed high-concentration inhibition and low-concentration promotion of seed germination of A. conyzoides. When the aqueous extract concentrations were 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>, the germination of A. conyzoides seeds was inhibited, while the germination was promoted at a concentration of 0.025 g·mL<sup>-1</sup>. This shows that when the planting density of sweet potato is large, it can form an obvious prevention and control effect on A. conyzoides, and thus improve herbicide resistance management.展开更多
文摘【目的】糖外排转运蛋白(sugars will eventually be exported transporters,SWEETs)在植物生长发育过程中发挥重要作用,解析SWEETs基因在枸杞果实发育过程中对糖积累作用,为进一步揭示SWEETs基因在枸杞果实发育过程中的作用提供参考。【方法】用生物信息学方法对枸杞SWEET基因(LbaSWEETs)进行全基因组鉴定,并用已发表的转录数据分析LbaSWEETs在果实发育时期的基因表达情况。【结果】枸杞SWEET基因家族共有37个成员,随机分布于10条染色体上,分别编码152~621个氨基酸,蛋白质分子质量为16.87~69.97 kD,等电点为4.96~9.86。亚细胞定位预测位于叶绿体或质膜,大多数含有7个跨膜螺旋。系统进化分析发现,37个LbaSWEETs蛋白可分为4个亚群,每个亚群的基因结构和保守基序组成相似。启动子元件分析表明:Lba-SWEETs基因启动子富含大量激素响应、逆境胁迫和生长发育响应元件。转录组数据和qRT-PCR分析表明:LbaSWEET9和LbaSWEET29基因表达量随果实成熟呈现显著增加。相关性分析结果表明,LbaSWEET9和LbaSWEET29基因表达量与果糖含量呈显著正相关。【结论】LbaSWEET9和LbaSWEET29基因是果糖积累的关键基因。
文摘SWEET(sugars will eventually be exported transporter)是一类介导蔗糖或己糖通过顺浓度梯度被动扩散跨细胞膜转运的新型糖转运蛋白。植物SWEET蛋白包括7个跨膜结构域,其中包含2个MtN3/Saliva结构域,可分为4个进化分支。SWEET转运蛋白在多种生理和生化过程中发挥着关键作用,包括韧皮部装载、激素运输、营养和生殖生长等。结合当前SWEET转运蛋白的研究进展,重点总结了SWEET的发现、蛋白结构及其在糖转运中的生物学功能,指出目前植物SWEET基因研究面临的问题,并对未来SWEET蛋白的研究重点进行了展望:1)探究SWEET蛋白的底物识别机制;2)挖掘提高作物产量和品质的关键SWEET基因;3)利用SWEET基因编辑和磷酸化等策略改良作物产量和品质。
文摘【目的】挖掘参与油茶糖代谢及逆境响应的糖外排转运子(sugars will eventually be exported transporters,SWEETs)。【方法】利用生物信息学方法分析油茶SWEETs家族的基因结构、蛋白基序、染色体定位、共线性关系、启动子区顺式作用元件及上游调控因子等,并利用RT-qPCR分析CoSWEETs在不同时期、不同组织及不同逆境胁迫下的基因表达情况。【结果】从油茶中鉴定得到14个CoSWEETs基因,不均匀分布于10条染色体上,不同成员间内含子-外显子数目存在差异。根据系统进化关系,14个CoSWEETs可分为 4个分支,均具有1-2个MtN3 保守结构域,同一分支具有相似的基因结构和基序。根据启动子顺式作用元件和上游转录因子预测的分析结果,CoSWEETs启动子中含有多个与生长发育、植物激素和应激相关的调节元件,其表达可能受到ERF、DOF、BBR-BPC、MYB等转录因子的调控。RT-qPCR分析表明大部分CoSWEETs成员在果实和根中高表达,在种子中的表达水平与发育时期相关,并根据低温、高盐和干旱等非生物胁迫下CoSWEETs的表达模式挖掘出CoSWEET1、CoSWEET2、CoSWEET17等响应油茶低温、干旱或高盐胁迫的基因。【结论】CoSWEET基因的表达受到多种激素及转录因子调控,并在油茶种子发育与逆境胁迫响应中发挥重要作用。
文摘SWEET(Sugars will eventually be exported transporter)蛋白是一类新型糖转运蛋白。本研究基于扁蓿豆(Medicago ruthenica)基因组对MrSWEET基因家族进行了鉴定和生物信息学分析,并通过qPCR初步分析MrSWEET在干旱和寒冷环境下的表达模式,以期深入探究扁蓿豆SWEET基因家族在非生物胁迫中的作用。结果表明,扁蓿豆SWEET糖转运蛋白家族共有18个成员,都具有典型的MtN3_saliva/PQ-Loop结构域。系统发育分析表明,其可分为4个进化枝,其中CladeⅠ包括MrSWEET1a、-1b、-2a、-2b、-3a、-3b;CladeⅡ包括MrSWEET4~6;CladeⅢ包括MrSWEET9~15,MrSWEET16~17属于CladeⅣ。所有的MrSWEET成员都含有Motif 1、3、4、5,可能与糖转运蛋白的功能有关。MrSWEET基因启动子区域含有多个与光响应、激素响应和非生物胁迫以及植物生长发育有关的功能元件。在干旱(15%PEG6000)和寒冷(4℃)胁迫下,扁蓿豆根部的MrSWEET基因表达水平相对高于叶片,且根部大多数基因在干旱和寒冷胁迫处理6、12 h时表达量最高;干旱处理下,根部的MrSWEET1a和MrSWEET16相对表达量在3、6、12、24 h和7 d时均高于对照,寒冷处理下根部的MrSWEET16表达量以及处理7 d的MrSWEET1a表达量高于对照,说明其可能参与调控扁蓿豆对干旱和寒冷胁迫的响应。
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
文摘SWEET(sugars will eventually be exported transporter)蛋白是一类结构保守、不依赖能量的糖转运蛋白,在植物生长发育、响应生物/非生物逆境胁迫等生理过程发挥重要作用。目前,尚未见花生SWEET基因相关报道。本研究首次全基因组挖掘了花生SWEET基因,对其分子特征及表达模式进行了细致分析。结果表明,栽培种花生和2个祖先野生种基因组分别存在55、25、28个SWEET基因,随机不均匀分布在各染色体上。来源于野生种和栽培种的同源基因在染色体位置相近,但也存在个别缺失,这验证了花生野生种和栽培种的进化关系,也暗示了基因组复制加倍过程中存在同源基因的丢失或扩张。基因内含子-外显子数目和位置以及启动子中顺式作用元件种类和数量均存在差异,暗示了花生SWEET基因生物学功能的多样性。系统进化分析将花生SWEET基因分为4个亚家族Clade I~Clade IV,同一亚家族同一分支的基因具有相似的外显子-内含子结构。分析Clevenger等组织表达谱发现部分基因表现为组织优势表达,这为深入了解SWEET基因行使功能部位提供了参考。此外,基于课题组前期发表的干旱和高盐胁迫转录组分析和RT-qPCR验证,我们挖掘出AhSWEET3a和AhSWEET4e等响应花生干旱或高盐胁迫的基因,功能有待进一步鉴定。研究结果为下一步深入分析花生SWEET基因功能提供了理论参考。
文摘光合作用同化物分配供给是果实和种子发育的主要限制因子,增加蔗糖分配转运到果实和种子是增产优质的潜在策略。SWEET(sugar will eventually be exported transporter)是近年来被鉴定较多的一类糖转运蛋白,该蛋白质通过从源叶运输营养物质调控库组织发育,参与植物生长发育以及生物和非生物胁迫反应。SWEET蛋白定位于膜结构,属于MtN3家族,通常包含7个跨膜结构域,其中包含2个MtN3/saliva结构域。随着染色体加倍、片段复制和串联复制等,SWEET基因在物种中得到扩张。SWEET4和SWEET39基因是作物驯化改良过程中选择的关键基因;SWEET9蛋白是蜜腺特异性糖转运蛋白,参与植物蜜腺的进化;SWEET16和SWEET17蛋白参与植物根系生长发育;SWEET11和SWEET15蛋白参与植物种子胚乳填充。本文系统综述了SWEET蛋白的结构、数量、分类、亚细胞定位、成员扩张与进化,分析了SWEET蛋白在叶、茎、根系发育,花药发育,花蜜分泌,种子填充和果实发育等植物生长发育中的功能作用,强调了SWEET蛋白在作物改良中的应用,说明增强源库强度对作物产量提高的可持续性具有重要意义。
文摘【目的】为挖掘参与烟草糖代谢的SWEET(sugar will eventually be exported transported)基因家族成员。【方法】以拟南芥SWEET蛋白为参考,利用生物信息学方法,对栽培烟草的SWEET蛋白家族进行鉴定,分析蛋白理化性质、系统进化、染色体定位、基因结构和顺式作用元件,对其在不同组织和不同胁迫处理的表达模式进行检测。【结果】从普通烟草中鉴定到70个可能的SWEET基因,系统发育树将其划分为4个亚家族,大多数烟草SWEET基因在进化过程中经历纯化选择。不同烟草组织的表达模式分析显示,一些烟草SWEET基因具有组织表达特异性。不同胁迫处理的表达模式分析显示,部分烟草SWEET基因在葡萄糖、蔗糖、低温、干旱或者是盐胁迫处理下表达量变化明显。【结论】Ntab0097340和Ntab0727890是烟草植株重要的响应干旱与低温胁迫的基因,本研究为深入研究烟草SWEET基因功能提供有价值的参考信息。
文摘植物叶片光合作用产生的糖类物质需要经过糖转运蛋白运输到其他器官进而发挥其重要功能。SWEET(sugars will eventually be exported transporters)是一类可实现糖类物质运输的蛋白,对植物生长发育及抵御外界生物和非生物胁迫具有重要意义。为分析大豆SWEET基因在荚粒发育过程中以及逆境胁迫下的表达,利用栽培大豆和野生大豆最新公布基因组数据鉴定SWEET基因,然后利用转录组数据分析基因在荚粒发育和抵抗花叶病毒与低磷逆境中的表达。结果表明,栽培大豆Williams82最新版本基因组(Wm82a4v1)有48个SWEET基因,分布于15条染色体,编码蛋白长度为174~354个氨基酸;野生大豆W05基因组有51个SWEET基因,分布于16条染色体,编码蛋白长度为84~392个氨基酸;系统进化树分析显示,99个栽培大豆和野生大豆SWEET基因分为3个亚组。对不同大豆品种转录组数据分析发现,16个SWEET基因在豆荚表达,其中Glyma.06G122200、Glyma.14G159900和Glyma.14G160100等随不同品种豆荚发育进程表达量增加;12个SWEET基因在籽粒表达,其中Glyma.08G025100、Glyma.13G041300和Glyma.14G120300随不同品种籽粒发育进程表达量增加,表明其在豆荚和籽粒发育中具有重要作用。接种大豆花叶病毒后,不同抗性品种间SWEET基因的表达存在较大差别,其中Glyma.08G009900和Glyma.13G264400在抗病品种叶片接种后诱导表达,而在感病品种接种前后表达量没有变化,说明其可能参与大豆抗病反应。对SWEET基因在低磷胁迫前后的表达分析发现,Glyma.04G198400、Glyma.14G160100和Glyma.15G211800等在大豆根系受低磷胁迫诱导表达,可能参与大豆耐低磷反应。栽培大豆SWEET基因单核苷酸多态性(single nucleotide polymorphism,SNP)等位变异分析发现,有43个SWEET基因含有220个非同义突变SNPs,其中103个位于编码蛋白的保守域,可能影响基因功能。研究结果为大豆豆荚和籽粒产量以及抗病耐逆分子育种提供了基因资源。
文摘甜瓜是我国,也是世界上最重要的夏令水果之一。甜瓜果实内所含碳水化合物的种类和数量很大程度上决定其品质和产量。SWEET(sugars will eventually be exported transporters)糖转运蛋白具有运输葡萄糖和其他寡糖的功能,最近研究表明,SWEET糖转运蛋白在果实发育中可能起调控作用。本研究从甜瓜基因组中鉴定获得18个SWEETs糖转运蛋白基因,进一步通过RT-PCR并结合实时荧光定量PCR(quantitative real-time PCR,qPCR)方法,筛选到3个SWEETs基因在整个果实发育期内或某个发育时期表达量较高。亚细胞定位显示,两个SWEETs基因(CmSWEET3,CmSWEET7a)定位在细胞膜上。进一步通过酵母表达发现,甜瓜CmSWEET7a在体外具有转运葡萄糖和果糖的功能。本研究为揭示SWEET糖转运蛋白在甜瓜果实发育过程的调控作用奠定了基础。
文摘SWEET(Sugars will eventually be exported transporter)是近年来新发现的一类糖转运体,它在维持植物体生长发育、生理代谢、逆境胁迫响应、植物与病原菌互作等方面具有重要作用。截至目前,小黑麦(×Triticosecale)SWEET家族成员尚未被鉴定。因此,本研究基于小黑麦的转录组数据库,通过同源性检索共鉴定出16条TwSWEETs基因,生物信息学分析表明小黑麦TwSWEETs基因家族在进化关系上可分为四个枝,具有较强的保守性。它们含有6~7个跨膜螺旋结构(Transmembrane helices,TMH),共有10个motif,亚细胞定位结果预测显示多数TwSWEETs定位于质膜上。进一步利用qPCR技术分析了TwSWEETs基因在干旱(20%PEG)、寒冷(4℃)胁迫下小黑麦根系和叶片的表达模式,结果表明绝大多数TwSWEET基因的相对表达量在受到胁迫后会显著上调或下调(如TwSWEET2a,TwSWEET6a,TwSWEET12,TwSWEET16),可作为小黑麦响应干旱或寒冷胁迫的候选基因。本研究结果将为深入解析小黑麦TwSWEET基因的功能及其调控小黑麦干旱、寒冷胁迫的响应机制提供理论依据。
文摘Sustainable weed management strategies are essential to reduce chemical and labor inputs. This study aimed to evaluate the effect of water extracts from sweet potato [Ipomoea batatas (L.) Lamarck] on seed germination of Ageratum conyzoides L. under controlled conditions. The aqueous was produced from plant parts i.e., roots, stems, and leaves of sweet potato at concentrations of 0.025, 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>. The results showed that the plant parts of sweet potato all contained allelopathic substances, which showed high-concentration inhibition and low-concentration promotion of seed germination of A. conyzoides. When the aqueous extract concentrations were 0.050, 0.075, and 0.100 g·mL<sup>-1</sup>, the germination of A. conyzoides seeds was inhibited, while the germination was promoted at a concentration of 0.025 g·mL<sup>-1</sup>. This shows that when the planting density of sweet potato is large, it can form an obvious prevention and control effect on A. conyzoides, and thus improve herbicide resistance management.