The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods ar...The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
In this study, an integrated approach for diagenetic facies classification, reservoir quality analysis and quantitative wireline log prediction of tight gas sandstones(TGSs) is introduced utilizing a combination of fi...In this study, an integrated approach for diagenetic facies classification, reservoir quality analysis and quantitative wireline log prediction of tight gas sandstones(TGSs) is introduced utilizing a combination of fit-for-purpose complementary testing and machine learning techniques. The integrated approach is specialized for the middle Permian Shihezi Formation TGSs in the northeastern Ordos Basin, where operators often face significant drilling uncertainty and increased exploration risks due to low porosities and micro-Darcy range permeabilities. In this study, detrital compositions and diagenetic minerals and their pore type assemblages were analyzed using optical light microscopy, cathodoluminescence, standard scanning electron microscopy, and X-ray diffraction. Different types of diagenetic facies were delineated on this basis to capture the characteristic rock properties of the TGSs in the target formation.A combination of He porosity and permeability measurements, mercury intrusion capillary pressure and nuclear magnetic resonance data was used to analyze the mechanism of heterogeneous TGS reservoirs.We found that the type, size and proportion of pores considerably varied between diagenetic facies due to differences in the initial depositional attributes and subsequent diagenetic alterations;these differences affected the size, distribution and connectivity of the pore network and varied the reservoir quality. Five types of diagenetic facies were classified:(i) grain-coating facies, which have minimal ductile grains, chlorite coatings that inhibit quartz overgrowths, large intergranular pores that dominate the pore network, the best pore structure and the greatest reservoir quality;(ii) quartz-cemented facies,which exhibit strong quartz overgrowths, intergranular porosity and a pore size decrease, resulting in the deterioration of the pore structure and reservoir quality;(iii) mixed-cemented facies, in which the cementation of various authigenic minerals increases the micropores, resulting in a poor pore structure and reservoir quality;(iv) carbonate-cemented facies and(v) tightly compacted facies, in which the intergranular pores are filled with carbonate cement and ductile grains;thus, the pore network mainly consists of micropores with small pore throat sizes, and the pore structure and reservoir quality are the worst. The grain-coating facies with the best reservoir properties are more likely to have high gas productivity and are the primary targets for exploration and development. The diagenetic facies were then translated into wireline log expressions(conventional and NMR logging). Finally, a wireline log quantitative prediction model of TGSs using convolutional neural network machine learning algorithms was established to successfully classify the different diagenetic facies.展开更多
Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore st...Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make the correlation between reservoir parameters and elastic properties more complicated and thus pose a major challenge in seismic reservoir characterization. We have developed a partially connected double porosity model to calculate elastic properties by considering the pore structure and connectivity, and to analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model predictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir properties' impacts on the P-wave impedance, S-wave impedance, and density. The template combined with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corresponding uncertainties from elastic parameters. The application of well-log and seismic data demonstrates that our 3D rock physics template-based probabilistic inversion approach performs well in predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.展开更多
A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the inte...A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.展开更多
In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary faci...In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary facies and diagenesis were conducted by means of analysis of cores, thin sections, fluid inclusions, X-ray diffraction, cathode luminescence and scanning electron microscope. It was found that the sand bodies of the major gas reservoirs in the Shan1 section (P1S1) and the He8 section (P2H8) were formed during the Permian as sedimentary facies such as braided-channel bars, braided-river channels and point bars of a meandering river. Four types of diagenetic facies developed subsequently: in order from the best to the poorest properties these are type A (weak compaction, early calcite cement-chlorite film facies), type B (moderate compaction, quartz overgrowth-feldspar corrosion-kaolinite filling facies), type C (strong compaction, late calcite cement-quartz corrosion facies) and type D (matrix filling and strong compaction facies). This diagenesis is undoubtedly the main reason for the poor reservoir properties of sandstone reservoirs, but the sedimentary facies are the underlying factors that greatly affect the diagenesis and thus the reservoir performance. Favorable diagenetic facies developed mainly in relatively small lithofacies such as braided-river channels, channel bars and point bars. The vertical distribution of the physical properties and the diagenetic facies of the reservoirs are related to the stratigraphic succession. Most of the sandstones between mudstones and thin beds of sandstone are unfavorable diagenetic facies. Analyses indicate that siliceous cementation can hardly be stopped by hydrocarbon filling. Authigenic chlorite could hardly protect the primary porosity. It not only occupies pore space, but also blocks pathways through sandstone reservoirs, so that it has significant influence on the permeability. Authigenic chlorite cannot be used as a marker for a specific sedimentary facies because it can be formed in different sedimentary facies, but it indicates high hydrodynamic conditions and presence of favorable reservoirs.展开更多
Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantit...Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.展开更多
Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability...Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability beach-bar sandstone reservoir of Es4 in Dongying sag. The results indicated the reservoir has the characteristics of middle-low pores,low-permeability,low compositional and structural maturity,and thin throat. The low-permeability is mainly due to sedimentation (fine particles and argillaceous inter beds) and diagenesis (compaction,cementation,and dissolution). The cementation reduced the physical property of the reservoir mainly by carbonate cementation,quartz autogeny and enragement,and autogeny clay. Clay minerals usually jam the pores by filling holes,close-fitting the wall of hole,bridging,wrapping grains,and separate attaching the pores and so on. The dissolution is insufficient so as not to improve the porosity and permeability of the reservoir obviously. So it is also an important factor of forming low-permeability reservoir.展开更多
Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of C...Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.展开更多
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controll...In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.展开更多
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separati...According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test.展开更多
Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeabilit...Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats.展开更多
The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the ...The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.展开更多
Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservo...Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservoir sandstones taken from the Zhuhai formation in the Panyu low-uplift of the Pear River Mouth Basin were examined. This study shows that chlorite cements are one of the most important diagenetic features of reservoir sandstones. The precipitation of chlorite was controlled by multiple factors and its development occurred early in eo-diagenesis and continued till Stage A of middle diagenesis. The precipitation of chlorite at the early stage was mainly affected by the sedimentary environment and provenance. Abundant Fe- and Mg-rich materials were supplied during the deposition of distributary channel sediments in the deltaic front setting and mainly in alkaline conditions. With the burial depth increasing, smectite and kaolinite tended to be transformed into chlorite. Smectite cements were completely transformed into chlorite in sandstones of the studied area. Volcanic lithics rich in Fe and Mg materials were dissolved and released Fe2+ and Mg 2+ into the pore water. These cations precipitated as chlorite cements in middle diagenesis in an alkaline diagenetic environment. Chlorite coatings acted as porosity and permeability, thus helping preserve cements in the chlorite cemented sandstones. The reservoir quality of chlorite cemented sandstones is much better than sandstones without chlorite cements. Chlorite cements play an important role in the reservoir evolution that was mainly characterized by preserving intergranular porosity and forming better pore-throat structures of sandstones.展开更多
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio...Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs.展开更多
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper...The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.展开更多
It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes t...It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes to use packers,sealing cannula and other tools in the same horizontal well to inject water in some fractures and produce oil from other fractures.This new energy supplement method forms a segmental synchronous injection-production system in a horizontal well.The method can reduce the distance between the injection end and the production end,and quickly establish an effective displacement system.Changing the displacement between wells to displacement between horizontal well sections,and point water flooding to linear uniform water flooding,the method can enhance water sweeping volume and shorten waterflooding response period.The research shows that:(1)In the synchronous injection and production of horizontal well in an ultra-low-permeability sandstone reservoir,the water injection section should select the section where the natural fractures and artificial fractures are in the same direction or the section with no natural fractures,and the space between two sections should be 60?80 m.(2)In addition to controlling injection pressure,periodic water injection can be taken to reduce the risk of re-opening and growth of natural fractures or formation fracture caused by the gradual increase of water injection pressure with water injection going on.(3)Field tests have verified that this method can effectively improve the output of single well and achieve good economic benefits,so it can be widely used in the development of ultra-low permeability sandstone reservoirs.展开更多
Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory.The samples were obtained from the W formation of the WXS Depression and covered low to near...Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory.The samples were obtained from the W formation of the WXS Depression and covered low to nearly high porosity and permeability ranges.The brine and four different density oils were used as pore fluids,which provided a good chance to investigate fluid viscosity-induced velocity dispersion.The analysis of experimental observations of velocity dispersion indicates that(1)the Biot model can explain most of the small discrepancy(about 2–3%)between ultrasonic measurements and zero frequency Gassmann predictions for high porosity and permeability samples saturated by all the fluids used in this experiment and is also valid for medium porosity and permeability samples saturated with low viscosity fluids(less than approximately 3 mP·S)and(2)the squirt flow mechanism dominates the low to medium porosity and permeability samples when fluid viscosity increases and produces large velocity dispersions as high as about 8%. The microfracture aspect ratios were also estimated for the reservoir sandstones and applied to calculate the characteristic frequency of the squirt flow model,above which the Gassmann’ s assumptions are violated and the measured high frequency velocities cannot be directly used for Gassmann’s fluid replacement at the exploration seismic frequency band for W formation sandstones.展开更多
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph...Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.展开更多
基金funded by the National Natural Science Foundation of China (42174131)。
文摘The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金financially supported by the National Natural Science Foundation of China (No. 42272156)research on efficient exploration and development technology for tight stone gas of China United Coalbed Methane Corporation (No. ZZGSECCYWG 2021-322)。
文摘In this study, an integrated approach for diagenetic facies classification, reservoir quality analysis and quantitative wireline log prediction of tight gas sandstones(TGSs) is introduced utilizing a combination of fit-for-purpose complementary testing and machine learning techniques. The integrated approach is specialized for the middle Permian Shihezi Formation TGSs in the northeastern Ordos Basin, where operators often face significant drilling uncertainty and increased exploration risks due to low porosities and micro-Darcy range permeabilities. In this study, detrital compositions and diagenetic minerals and their pore type assemblages were analyzed using optical light microscopy, cathodoluminescence, standard scanning electron microscopy, and X-ray diffraction. Different types of diagenetic facies were delineated on this basis to capture the characteristic rock properties of the TGSs in the target formation.A combination of He porosity and permeability measurements, mercury intrusion capillary pressure and nuclear magnetic resonance data was used to analyze the mechanism of heterogeneous TGS reservoirs.We found that the type, size and proportion of pores considerably varied between diagenetic facies due to differences in the initial depositional attributes and subsequent diagenetic alterations;these differences affected the size, distribution and connectivity of the pore network and varied the reservoir quality. Five types of diagenetic facies were classified:(i) grain-coating facies, which have minimal ductile grains, chlorite coatings that inhibit quartz overgrowths, large intergranular pores that dominate the pore network, the best pore structure and the greatest reservoir quality;(ii) quartz-cemented facies,which exhibit strong quartz overgrowths, intergranular porosity and a pore size decrease, resulting in the deterioration of the pore structure and reservoir quality;(iii) mixed-cemented facies, in which the cementation of various authigenic minerals increases the micropores, resulting in a poor pore structure and reservoir quality;(iv) carbonate-cemented facies and(v) tightly compacted facies, in which the intergranular pores are filled with carbonate cement and ductile grains;thus, the pore network mainly consists of micropores with small pore throat sizes, and the pore structure and reservoir quality are the worst. The grain-coating facies with the best reservoir properties are more likely to have high gas productivity and are the primary targets for exploration and development. The diagenetic facies were then translated into wireline log expressions(conventional and NMR logging). Finally, a wireline log quantitative prediction model of TGSs using convolutional neural network machine learning algorithms was established to successfully classify the different diagenetic facies.
基金supported by the National Natural Science Foundation of China (42104121)the Scientific Research and Technology Development Project of the CNPC (2021DJ0606)。
文摘Quantitative prediction of reservoir properties(e.g., gas saturation, porosity, and shale content) of tight reservoirs is of great significance for resource evaluation and well placements. However, the complex pore structures, poor pore connectivity, and uneven fluid distribution of tight sandstone reservoirs make the correlation between reservoir parameters and elastic properties more complicated and thus pose a major challenge in seismic reservoir characterization. We have developed a partially connected double porosity model to calculate elastic properties by considering the pore structure and connectivity, and to analyze these factors' influences on the elastic behaviors of tight sandstone reservoirs. The modeling results suggest that the bulk modulus is likely to be affected by the pore connectivity coefficient, while the shear modulus is sensitive to the volumetric fraction of stiff pores. By comparing the model predictions with the acoustic measurements of the dry and saturated quartz sandstone samples, the volumetric fraction of stiff pores and the pore connectivity coefficient can be determined. Based on the calibrated model, we have constructed a 3D rock physics template that accounts for the reservoir properties' impacts on the P-wave impedance, S-wave impedance, and density. The template combined with Bayesian inverse theory is used to quantify gas saturation, porosity, clay content, and their corresponding uncertainties from elastic parameters. The application of well-log and seismic data demonstrates that our 3D rock physics template-based probabilistic inversion approach performs well in predicting the spatial distribution of high-quality tight sandstone reservoirs in southwestern China.
文摘A numerical model of hydraulic fracture propagation is introduced for a representative reservoir(Yuanba continental tight sandstone gas reservoir in Northeast Sichuan).Different parameters are considered,i.e.,the interlayer stress difference,the fracturing discharge rate and the fracturing fluid viscosity.The results show that these factors affect the gas and water production by influencing the fracture size.The interlayer stress difference can effectively control the fracture height.The greater the stress difference,the smaller the dimensionless reconstruction volume of the reservoir,while the flowback rate and gas production are lower.A large displacement fracturing construction increases the fracture-forming efficiency and expands the fracture size.The larger the displacement of fracturing construction,the larger the dimensionless reconstruction volume of the reservoir,and the higher the fracture-forming efficiency of fracturing fluid,the flowback rate,and the gas production.Low viscosity fracturing fluid is suitable for long fractures,while high viscosity fracturing fluid is suitable for wide fractures.With an increase in the fracturing fluid viscosity,the dimensionless reconstruction volume and flowback rate of the reservoir display a non-monotonic behavior,however,their changes are relatively small.
基金supported by the major national special projects for technology:Enrichment Regularity and Distribution Prediction for Hydrocarbon of Key Clastic Rocks in Central and Western Regions (Approval No.: 2011ZX05002-006)National Natural Science Foundation of China (Approval No.: 41372135 and 41402120)Research and Innovation Team Plan Fund of Shandong University of Science and Technology (Approval No.: 2010KYTD103)
文摘In order to determine the genesis and the factors that control the low-porosity and low- permeability sandstone reservoirs in the eastern Sulige Gas Field in the Ordos Basin, systematic studies on the sedimentary facies and diagenesis were conducted by means of analysis of cores, thin sections, fluid inclusions, X-ray diffraction, cathode luminescence and scanning electron microscope. It was found that the sand bodies of the major gas reservoirs in the Shan1 section (P1S1) and the He8 section (P2H8) were formed during the Permian as sedimentary facies such as braided-channel bars, braided-river channels and point bars of a meandering river. Four types of diagenetic facies developed subsequently: in order from the best to the poorest properties these are type A (weak compaction, early calcite cement-chlorite film facies), type B (moderate compaction, quartz overgrowth-feldspar corrosion-kaolinite filling facies), type C (strong compaction, late calcite cement-quartz corrosion facies) and type D (matrix filling and strong compaction facies). This diagenesis is undoubtedly the main reason for the poor reservoir properties of sandstone reservoirs, but the sedimentary facies are the underlying factors that greatly affect the diagenesis and thus the reservoir performance. Favorable diagenetic facies developed mainly in relatively small lithofacies such as braided-river channels, channel bars and point bars. The vertical distribution of the physical properties and the diagenetic facies of the reservoirs are related to the stratigraphic succession. Most of the sandstones between mudstones and thin beds of sandstone are unfavorable diagenetic facies. Analyses indicate that siliceous cementation can hardly be stopped by hydrocarbon filling. Authigenic chlorite could hardly protect the primary porosity. It not only occupies pore space, but also blocks pathways through sandstone reservoirs, so that it has significant influence on the permeability. Authigenic chlorite cannot be used as a marker for a specific sedimentary facies because it can be formed in different sedimentary facies, but it indicates high hydrodynamic conditions and presence of favorable reservoirs.
基金supported by Open Fund (PLC201203) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)Major Project of Education Department in Sichuan Province (13ZA0177)
文摘Due to inherent limits of data acquisition and geophysical data resolution, there are large uncertainties in the characterization of subsurface fractures. However, outcrop analogies can provide qualitative and quantitative information on a large number of fractures, based on which the accuracy of subsurface fracture characterization can be improved. Here we take the tectonic fracture modeling of an ultra-low permeability sandstone reservoir based on an outcrop analogy, a case study of the Chang6t~ Formation of the Upper Triassic Yanchang Group of the Wangyao Oilfield in the Ordos Basin of China. An outcrop at the edge of the basin is a suitable analog for the reservoir, but the prerequisite is that they must have equivalent previous stress fields, similar final structural characteristics, relative timing and an identical depositional environment and diagenesis. The relationship among fracture density, rock type and bed thickness based on the outcrop is one of the most important fracture distribution models, and can be used to interpret fracture density in individual wells quantitatively. Fracture orientation, dip, geometry and scale, also should be described and measured in the outcrop, and can be used together with structure restoration and single well fracture density interpretation to guide fracture intensity prediction on bed surfaces and to constrain the construction of the 3D fracture geometry model of the subsurface reservoir. The application of the above principles shows the outcrop-based tectonic fracture models of the target ultra-low permeability sandstone reservoir are consistent with fractures inferred from microseismic interpretation and tracer tests. This illustrated that the fracture modeling based on the outcrop analogy is reliable and can reduce the uncertainty in stochastic fracture modeling.
基金Project P06012 supported by the Key Research Project of SINOPEC
文摘Core and cast sections observation and description,and logging,scanning electron microscope and core lab analysis data etc. were applied to the present research of the characteristics and mechanism of low permeability beach-bar sandstone reservoir of Es4 in Dongying sag. The results indicated the reservoir has the characteristics of middle-low pores,low-permeability,low compositional and structural maturity,and thin throat. The low-permeability is mainly due to sedimentation (fine particles and argillaceous inter beds) and diagenesis (compaction,cementation,and dissolution). The cementation reduced the physical property of the reservoir mainly by carbonate cementation,quartz autogeny and enragement,and autogeny clay. Clay minerals usually jam the pores by filling holes,close-fitting the wall of hole,bridging,wrapping grains,and separate attaching the pores and so on. The dissolution is insufficient so as not to improve the porosity and permeability of the reservoir obviously. So it is also an important factor of forming low-permeability reservoir.
基金Project(2015KTCL01-09)supported by the Innovation Project of Science and Technology of Shaanxi Province,ChinaProject(2015M582699)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016JQ4022)supported by the Natural Science Foundation Research Project of Shaanxi Province,ChinaProject(41702146)supported by the National Natural Science Foundation of China
文摘Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.
基金Project 50374048 supported by the National Natural Science Foundation of China
文摘In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)
文摘According to the characteristics of"structural elements"(framework grain,interstitial material and pore throat structure)of low-permeability sandstone reservoir,the"step by step dissolution and separation"acidification and acid fracturing technology has been developed and tested in field.There are three main mechanisms affecting permeability of low-permeability sandstone reservoir:(1)The mud fillings between the framework grains block the seepage channels.(2)In the process of burial,the products from crystallization caused by changes in salinity and solubility and uneven migration and variation of the syn-sedimentary formation water occupy the pores and throat between grains.(3)Under the action of gradual increase of overburden pressure,the framework grains of the rock is compacted tighter,making the seepage channels turn narrower.The"step by step dissolution and separation"acidification(acid fracturing)technology uses sustained release acid as main acidizing fluid,supramolecular solvent instead of hydrochloric acid to dissolve carbonate,and a composite system of ammonium hydrogen fluoride,fluoroboric acid,and fluorophosphoric acid to dissolve silicate,and dissolving and implementing step by step,finally reaching the goal of increasing porosity and permeability.By using the technology,the main blocking interstitial material can be dissolved effectively and the dissolution residual can be removed from the rock frame,thus expanding the effective drainage radius and increasing production and injection of single well.This technology has been proved effective by field test.
文摘Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats.
基金Supported by the Research on Exploration and Development Technology and New Exploration Field of High Temperature and Pressure Gas Reservoir in Western South China Sea(CNOOC-KJ135ZDXM38ZJ02ZJ)National Natural Science Foundation of China(41972129)National Science and Technology Key Project(2016ZX05024-005,2016ZX05026-003-005)。
文摘The characteristics of reservoir heterogeneity of the marine gravity flow tight sandstone from the Miocene Huangliu Formation under abnormally high pressure setting at LD10 area in Yinggehai Basin are studied,and the influencing factors on reservoir heterogeneity are discussed,based on modular formation dynamics test,thin sections,XRD analysis of clay minerals,scanning electron microscopy,measurement of pore throat image,porosity and permeability,and high pressure Hg injection,as well as the stimulation of burial thermal history.The aim is to elucidate characteristics of the heterogeneity and the evolution process of heterogeneity of the reservoir,and predict the favorable reservoirs distribution.(1)The heterogeneity of the reservoir is mainly controlled by the cement heterogeneity,pore throat heterogeneity,quality of the reservoir heterogeneity,and the diagenesis under an abnormally high pressure setting.(2)The differences in pore-throat structure caused by diagenetic evolution affected the intergranular material heterogeneity and the pore throat heterogeneity,and finally controlled the heterogeneity of reservoir quality.(3)Compared with the reservoir under normal pressure,abnormally high pressure restrains strength of the compaction and cementation and enhances the dissolution of the reservoir to some extent,and abnormally high pressure thus weakening the heterogeneity of the reservoir to a certain degree.The favorable reservoirs are mainly distributed in the gravity flow sand body under the strong overpressure zone in the middle and lower part of Huangliu Formation.
基金supported by the China National Science & Technology Project(2008ZX05025-006)the China 973 Key Foundation Research Development Project(2009CB219400)
文摘Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservoir sandstones taken from the Zhuhai formation in the Panyu low-uplift of the Pear River Mouth Basin were examined. This study shows that chlorite cements are one of the most important diagenetic features of reservoir sandstones. The precipitation of chlorite was controlled by multiple factors and its development occurred early in eo-diagenesis and continued till Stage A of middle diagenesis. The precipitation of chlorite at the early stage was mainly affected by the sedimentary environment and provenance. Abundant Fe- and Mg-rich materials were supplied during the deposition of distributary channel sediments in the deltaic front setting and mainly in alkaline conditions. With the burial depth increasing, smectite and kaolinite tended to be transformed into chlorite. Smectite cements were completely transformed into chlorite in sandstones of the studied area. Volcanic lithics rich in Fe and Mg materials were dissolved and released Fe2+ and Mg 2+ into the pore water. These cations precipitated as chlorite cements in middle diagenesis in an alkaline diagenetic environment. Chlorite coatings acted as porosity and permeability, thus helping preserve cements in the chlorite cemented sandstones. The reservoir quality of chlorite cemented sandstones is much better than sandstones without chlorite cements. Chlorite cements play an important role in the reservoir evolution that was mainly characterized by preserving intergranular porosity and forming better pore-throat structures of sandstones.
基金support by the National Key Research and Development Program of China(Grant No.2018YFA0702400)is gratefully acknowledged.
文摘Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs.
基金This paper is financially supported by the National Natural Science Foundation of China (No. 40572080)the China National Petroleum Corporation (CNPC) Petroleum Science and Technology Innovation Foundation (No.05E7026)
文摘The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.
基金Supported by the China National Science and Technology Major Project(2016ZX05050)
文摘It is difficult to build an effective water flooding displacement pressure system in the middle section of a horizontal well in an ultra-low permeability sandstone reservoir.To solve this problem,this study proposes to use packers,sealing cannula and other tools in the same horizontal well to inject water in some fractures and produce oil from other fractures.This new energy supplement method forms a segmental synchronous injection-production system in a horizontal well.The method can reduce the distance between the injection end and the production end,and quickly establish an effective displacement system.Changing the displacement between wells to displacement between horizontal well sections,and point water flooding to linear uniform water flooding,the method can enhance water sweeping volume and shorten waterflooding response period.The research shows that:(1)In the synchronous injection and production of horizontal well in an ultra-low-permeability sandstone reservoir,the water injection section should select the section where the natural fractures and artificial fractures are in the same direction or the section with no natural fractures,and the space between two sections should be 60?80 m.(2)In addition to controlling injection pressure,periodic water injection can be taken to reduce the risk of re-opening and growth of natural fractures or formation fracture caused by the gradual increase of water injection pressure with water injection going on.(3)Field tests have verified that this method can effectively improve the output of single well and achieve good economic benefits,so it can be widely used in the development of ultra-low permeability sandstone reservoirs.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.40830423and40904029)CNOOC Zhanjiang Research Project(Contract No.Z2008SLZJ-FN0158)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘Ultrasonic velocities of a set of saturated sandstone samples were measured at simulated in-situ pressures in the laboratory.The samples were obtained from the W formation of the WXS Depression and covered low to nearly high porosity and permeability ranges.The brine and four different density oils were used as pore fluids,which provided a good chance to investigate fluid viscosity-induced velocity dispersion.The analysis of experimental observations of velocity dispersion indicates that(1)the Biot model can explain most of the small discrepancy(about 2–3%)between ultrasonic measurements and zero frequency Gassmann predictions for high porosity and permeability samples saturated by all the fluids used in this experiment and is also valid for medium porosity and permeability samples saturated with low viscosity fluids(less than approximately 3 mP·S)and(2)the squirt flow mechanism dominates the low to medium porosity and permeability samples when fluid viscosity increases and produces large velocity dispersions as high as about 8%. The microfracture aspect ratios were also estimated for the reservoir sandstones and applied to calculate the characteristic frequency of the squirt flow model,above which the Gassmann’ s assumptions are violated and the measured high frequency velocities cannot be directly used for Gassmann’s fluid replacement at the exploration seismic frequency band for W formation sandstones.
基金supported by the National 973 project(Nos.2014CB239006 and 2011CB202402)the National Natural Science Foundation of China(Nos.41104069 and 41274124)+1 种基金Sinopec project(No.KJWX2014-05)the Fundamental Research Funds for the Central Universities(No.R1401005A)
文摘Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.