The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in...The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,esp...The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling s...To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O22-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
With the rapid increase in the installed capacity of renewable energy in modern power systems,the stable operation of power systems with considerable power electronic equipment requires further investigation.In conver...With the rapid increase in the installed capacity of renewable energy in modern power systems,the stable operation of power systems with considerable power electronic equipment requires further investigation.In converter-based islanded mi-crogrid(CIM)systems equipped with grid-following(GFL)and grid-forming(GFM)voltage-source converters(VSCs),it is chal-lenging to maintain stability due to the mutual coupling effects between different VSCs and the loss of voltage and frequency sup-port from the power system.In previous studies,quantitative transient stability analysis was primarily used to assess the active power loop of GFM-VSCs.However,frequency and voltage dy-namics are found to be strongly coupled,which strongly affects the estimation result of stability boundary.In addition,the vary-ing damping terms have not been fully captured.To bridge these gaps,this paper investigates the transient stability of CIM consid-ering reactive power loop dynamics and varying damping.First,an accuracy-enhanced nonlinear model of the CIM is derived based on the effects of reactive power loop and post-disturbance frequency jump phenomena.Considering these effects will elimi-nates the risk of misjudgment.The reactive power loop dynamics make the model coefficients be no longer constant and thus vary with the power angle.To evaluate quantitatively the effects of re-active power loop and varying damping on the transient stability of CIM,an iterative criterion based on the equal area criterion theory is proposed.In addition,the effects of parameters on the stable boundary of power system are analyzed,and the dynamic interaction mechanisms are revealed.Simulation and experiment results verify the merits of the proposed method.展开更多
With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.A...With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal ...The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.展开更多
BACKGROUNDAlmost all cases of cervical cancer can be attributed to human papillomavirus(HPV) infection. The loop electrosurgical excision procedure (LEEP) is widelyused to treat HPV-mediated disease;thus, cervical can...BACKGROUNDAlmost all cases of cervical cancer can be attributed to human papillomavirus(HPV) infection. The loop electrosurgical excision procedure (LEEP) is widelyused to treat HPV-mediated disease;thus, cervical cancer is highly preventable.However, LEEP does not necessarily clear HPV rapidly and may affect theaccuracy of the results of ThinPrep cytology test (TCT) and cervical biopsy due tothe formation of cervical scars.CASE SUMMARYA 40-year-old woman underwent LEEP for cervical intraepithelial neoplasia grade1 approximately 10 years ago. Subsequent standard cervical cancer screeningsuggested persistent HPV-52 infection, but TCT results were negative. Cervicalbiopsy under colposcopy was performed thrice over a 10-year period, yieldingnegative pathology results. She developed abnormal vaginal bleeding after sexualactivity, persisting for approximately 1 year, and underwent hysteroscopy in ourhospital. Histopathologic evaluation confirmed adenocarcinoma in situ of theuterine cervix.CONCLUSIONPatients with long-term persistent, high-risk HPV infection and negative pathologyresults of cervical biopsy after LEEP are at risk of cervical cancer. Hysteroscopicresection of cervical canal tissue is recommended as a supplement tocervical biopsy because it helps define the lesion site and may yield a pathologicdiagnosis.展开更多
By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2...By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2)into CO.Generally,NiFe_(2_)O_(4)oxygen carriers have demonstrated remarkable efficiency in chemical looping CO_(2)conversion.Nevertheless,the intricate process of atomic migration and evolution within the internal structure of bimetallic oxygen carriers during continuous high‐temperature redox cycling remains unclear.Consequently,the lack of a fundamental understanding of the complex ionic migration and oxygen transfer associated with energy conversion processes hampers the design of high‐performance oxygen carriers.Thus,in this study,we employed in situ characterization techniques and theoretical calculations to investigate the ion migration behavior and structural evolution in the bulk of NiFe_(2_)O_(4)oxygen carriers during H2 reduction and CO_(2)/lab air oxidation cycles.We discovered that during the H2 reduction step,lattice oxygen rapidly migrates to vacancy layers to replenish consumed active oxygen species,while Ni leaches from the material and migrates to the surface.During the CO_(2)splitting step,Ni migrates toward the core of the bimetallic oxygen carrier,forming Fe–Ni alloys.During the air oxidation step,Fe–Ni migrates outward,creating a hollow structure owing to the Kirkendall effect triggered by the swift transfer of lattice oxygen.The metal atom migration paths depend on the oxygen transfer rates.These discoveries highlight the significance of regulating the release–recovery rate of lattice oxygen to uphold the structures and reactivity of oxygen carriers.This work offers a comprehensive understanding of the oxidation/reduction‐driven atomic interdiffusion behavior of bimetallic oxygen carriers.展开更多
Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who...Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care.展开更多
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ...Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.展开更多
Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization eff...Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.展开更多
基金supported by the National Natural Science Foundation of China(No.U1967212)the Fundamental Research Funds for the Central Universities(No.2021MS032)the Nuclear Materials Innovation Foundation(No.WDZC-2023-AW-0305)。
文摘The evolution of dislocation loops in austenitic steels irradiated with Fe^(+)is investigated using cluster dynamics(CD)simulations by developing a CD model.The CD predictions are compared with experimental results in the literature.The number density and average diameter of the dislocation loops obtained from the CD simulations are in good agreement with the experimental data obtained from transmission electron microscopy(TEM)observations of Fe~+-irradiated Solution Annealed 304,Cold Worked 316,and HR3 austenitic steels in the literature.The CD simulation results demonstrate that the diffusion of in-cascade interstitial clusters plays a major role in the dislocation loop density and dislocation loop growth;in particular,for the HR3 austenitic steel,the CD model has verified the effect of temperature on the density and size of the dislocation loops.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
文摘The brain functions as a closed-loop system that continuously generates behavior in response to the external environment and adjusts actions based on the outcomes.Traditional research methodologies in neuroscience,especially those employed in brain imaging experiments,have mainly adopted an open-loop paradigm(Grosenick et al.,2015).Functional neural circuits are analyzed offline and subsequently tested through manipulation of neuronal activities within specific regions or with genetic markers.By establishing a closed-loop research paradigm,functional ensembles can be detected and tested in real time with temporal sequences.These functional ensembles,rather than brain regions or genetically labeled neural populations,serve as fundamental units of neural networks,offering valuable insights into the dissection of neural circuits.The closed-loop research paradigm also enables the capture of high-dimensional activities of internal brain dynamics and precise elucidation of physiological processes such as learning,decision-making,and sleep.
文摘[目的]研究庆阳驴养殖群体的遗传多样性与母系起源,了解其遗传信息,为保护庆阳驴种质资源、选育和遗传改良工作提供理论依据。[方法]随机选取133头庆阳驴,对其线粒体DNA(mitochondrial DNA,mtDNA)D-loop区序列进行PCR扩增、测序及比对,并探讨庆阳驴的遗传多样性与母系起源。[结果]在获得的520 bp D-loop碱基序列中,AT含量(57.3%)高于GC含量(42.8%),表现出碱基的偏倚性;检测到38个变异位点,包含8个碱基对的转换;其核苷酸多样性(Pi)、单倍型多样性(Hd)、平均核苷酸差异(K)分别为0.01591、0.895和8.274,与欧洲家驴和中国家驴研究的平均值相比较低,说明该驴品种核苷酸变异较为贫乏。庆阳驴mtDNA D-loop区存在35个单倍型,单倍型之间的遗传距离为0.002~0.042。系统进化结果显示,庆阳驴存在2个线粒体支系,表明其具有2个母系起源,且遗传距离表明,庆阳驴与克罗地亚家驴之间的遗传距离较近。[结论]本研究从分子水平初步揭示庆阳驴核苷酸变异比较贫乏,杂交程度高,mtDNA遗传多态性正逐步丧失,应加强庆阳驴品种的遗传资源保护工作。
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
基金National Natural Science Foundation of China(Grant Nos:22038011,51976168)K.C.Wong Education Foundation,the Natural Science Basic Research Program of Shaanxi(Program No.2021JLM-17)+1 种基金Programme of Introducing Talents of Discipline to Universities(B23025)Innovation Capability Support Program of Shaanxi(Program Nos:2023KJXX-004,2023-CX-TD-26,2022KXJ-126).
文摘To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process.The decoupling strategy was adopted to decouple the biomass gasification process,and the composite oxygen carrier was prepared by embedding Fe_(2)O_(3) in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane,which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas.Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method,and the reforming performance was evaluated by a fixed bed reactor,and the kinetic parameters were solved based on the gas–solid reaction model.Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design.The experimental results showed that the reaction performance of Fe_(2)O_(3)@SBA-16 was compared with that of pure Fe_(2)O_(3) and Fe_(2)O_(3)@SBA-15,and the syngas yield was increased by 55.3%and 20.7%respectively,and it had good cycle stability.Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature.The activation energy was 192.79 kJ/mol by fitting.This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O22-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
基金supported in part by the National Key Research and Development Program of China(No.2022YFB2402700)in part by the Science and Technology Project of State Grid Corporation of China(No.52272222001J).
文摘With the rapid increase in the installed capacity of renewable energy in modern power systems,the stable operation of power systems with considerable power electronic equipment requires further investigation.In converter-based islanded mi-crogrid(CIM)systems equipped with grid-following(GFL)and grid-forming(GFM)voltage-source converters(VSCs),it is chal-lenging to maintain stability due to the mutual coupling effects between different VSCs and the loss of voltage and frequency sup-port from the power system.In previous studies,quantitative transient stability analysis was primarily used to assess the active power loop of GFM-VSCs.However,frequency and voltage dy-namics are found to be strongly coupled,which strongly affects the estimation result of stability boundary.In addition,the vary-ing damping terms have not been fully captured.To bridge these gaps,this paper investigates the transient stability of CIM consid-ering reactive power loop dynamics and varying damping.First,an accuracy-enhanced nonlinear model of the CIM is derived based on the effects of reactive power loop and post-disturbance frequency jump phenomena.Considering these effects will elimi-nates the risk of misjudgment.The reactive power loop dynamics make the model coefficients be no longer constant and thus vary with the power angle.To evaluate quantitatively the effects of re-active power loop and varying damping on the transient stability of CIM,an iterative criterion based on the equal area criterion theory is proposed.In addition,the effects of parameters on the stable boundary of power system are analyzed,and the dynamic interaction mechanisms are revealed.Simulation and experiment results verify the merits of the proposed method.
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002]。
文摘With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
文摘The ultrasound pressure-strain loop (PSL) technique is a non-invasive method of examining myocardial work, which takes into account the effect of cardiac afterload on deformation and combines the overall longitudinal strain force of the left ventricle with the changes in the left ventricular pressure, allowing earlier detection of possible subclinical cardiac damage in patients, and a more accurate and non-invasive assessment of the patient’s myocardial work performance. In this article, we will discuss the progress of PSL applications in cardiovascular diseases.
基金2024 Natural Science Joint Foundation of Zhejiang Province,No.LBY24H040007.
文摘BACKGROUNDAlmost all cases of cervical cancer can be attributed to human papillomavirus(HPV) infection. The loop electrosurgical excision procedure (LEEP) is widelyused to treat HPV-mediated disease;thus, cervical cancer is highly preventable.However, LEEP does not necessarily clear HPV rapidly and may affect theaccuracy of the results of ThinPrep cytology test (TCT) and cervical biopsy due tothe formation of cervical scars.CASE SUMMARYA 40-year-old woman underwent LEEP for cervical intraepithelial neoplasia grade1 approximately 10 years ago. Subsequent standard cervical cancer screeningsuggested persistent HPV-52 infection, but TCT results were negative. Cervicalbiopsy under colposcopy was performed thrice over a 10-year period, yieldingnegative pathology results. She developed abnormal vaginal bleeding after sexualactivity, persisting for approximately 1 year, and underwent hysteroscopy in ourhospital. Histopathologic evaluation confirmed adenocarcinoma in situ of theuterine cervix.CONCLUSIONPatients with long-term persistent, high-risk HPV infection and negative pathologyresults of cervical biopsy after LEEP are at risk of cervical cancer. Hysteroscopicresection of cervical canal tissue is recommended as a supplement tocervical biopsy because it helps define the lesion site and may yield a pathologicdiagnosis.
基金National Natural Science Foundation of China,Grant/Award Numbers:52076209,52006224,52106285,22179027Foundation and Applied Foundation Research of Guangdong Province,Grant/Award Number:2022B1515020045+1 种基金Natural Science Foundation of Guangxi Province,Grant/Award Number:2021GXNSFAA075036Young Talent Support Project of Guangzhou Association for Science and Technology,Grant/Award Number:QT‐2023‐042。
文摘By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2)into CO.Generally,NiFe_(2_)O_(4)oxygen carriers have demonstrated remarkable efficiency in chemical looping CO_(2)conversion.Nevertheless,the intricate process of atomic migration and evolution within the internal structure of bimetallic oxygen carriers during continuous high‐temperature redox cycling remains unclear.Consequently,the lack of a fundamental understanding of the complex ionic migration and oxygen transfer associated with energy conversion processes hampers the design of high‐performance oxygen carriers.Thus,in this study,we employed in situ characterization techniques and theoretical calculations to investigate the ion migration behavior and structural evolution in the bulk of NiFe_(2_)O_(4)oxygen carriers during H2 reduction and CO_(2)/lab air oxidation cycles.We discovered that during the H2 reduction step,lattice oxygen rapidly migrates to vacancy layers to replenish consumed active oxygen species,while Ni leaches from the material and migrates to the surface.During the CO_(2)splitting step,Ni migrates toward the core of the bimetallic oxygen carrier,forming Fe–Ni alloys.During the air oxidation step,Fe–Ni migrates outward,creating a hollow structure owing to the Kirkendall effect triggered by the swift transfer of lattice oxygen.The metal atom migration paths depend on the oxygen transfer rates.These discoveries highlight the significance of regulating the release–recovery rate of lattice oxygen to uphold the structures and reactivity of oxygen carriers.This work offers a comprehensive understanding of the oxidation/reduction‐driven atomic interdiffusion behavior of bimetallic oxygen carriers.
文摘Background: Cervical Intraepithelial neoplasia treatments have become essential interventions to manage cervical lesions. Majority of the recipients of these treatments are women within the reproductive age group, who according to literature may be at risk of adverse pregnancy outcomes. This pilot study is part of a study investigating adverse pregnancy outcomes among women who received Cryotherapy, Thermal ablation and Loop Electrosurgical Excision Procedure compared to the untreated women in Zambia. Materials and Methods: This descriptive study analyzed records of 886 (n = 443 treated and n = 443 untreated) women aged 15 - 49 years. The women were either screened with Visual Inspection with Acetic Acid or treated for Cervical Intraepithelial neoplasia at the Adult Infectious Disease Centre between January 2010 and December 2020. Women meeting the criteria were identified using the Visual Inspection with Acetic Acid screening records and telephone interviews to obtain the adverse pregnancy outcome experienced. Data were analysed using STATA version 16 to determine the prevalence and obtain frequency distribution of outcomes of interest. Univariate and multivariable binary logistic regression estimated odds of adverse pregnancy outcomes across the three treatments. Results: The respondents were aged 15 to 49 years. Adverse pregnancy outcomes were observed to be more prevalent in the treatment group (18.5%) compared to the untreated group (5.4%). Normal pregnancy outcomes were lower in the treated (46.3%;n = 443) than the untreated (53.7%;n = 443). The treated group accounted for the majority of abortions (85.2%), prolonged labour (85.7%) and low birth weight (80%), whereas, the untreated accounted for the majority of still births (72.7%). Women treated with cryotherapy (aOR = 2.43, 95% CI = 1.32 - 4.49, p = 0.004), thermal ablation (aOR = 6.37, 95% CI = 0.99 - 41.2, p = 0.052) and Loop Electrosurgical Excision Procedure (aOR = 9.67, 95% CI = 2.17 - 43.1, p = 0.003) had two-, six- and ten-times higher odds of adverse pregnancy outcomes respectively, relative to women who required no treatment. Conclusion: Adverse pregnancy outcomes are prevalent among women who have received treatment in Zambia. The findings indicate that treating Cervical Intraepithelial Neoplasia has been linked to higher chances of experiencing abortion, delivering low birth weight babies and enduring prolonged labor that may result in a caesarean section delivery. Cervical neoplasia treatments, particularly Loop Electrosurgical Excision Procedure, are associated with significantly increased odds of adverse pregnancy outcomes. It is essential to include information about prior Cervical Intraepithelial neoplasia treatment outcomes in obstetric care.
文摘Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.
基金supported by the National Natural Science Foundation of China(52160013,51768054)Inner Mongolia Autonomous Region“Grassland Talent”Science Fund Program(CYY012057)+2 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22062)Inner Mongolia Natural Science Foundation(2021LHMS05026)Inner Mongolia University Research Program(2023RCTD018,2023YXX8023,2024YXX5027,2023YXX8023,2024YXX5027).
文摘Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.