期刊文献+
共找到277,926篇文章
< 1 2 250 >
每页显示 20 50 100
Study on the Safety and Prevention Technology of Coal Mining under the River in Xingyuan Coal Mine
1
作者 Abdoulaye Sylla Wenbing Guo 《Open Journal of Geology》 CAS 2024年第3期339-402,共64页
Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This proj... Coal mining-induced surface subsidence poses significant ecological and infrastructural challenges, necessitating a comprehensive study to ensure safe mining practices, particularly in underwater conditions. This project aims to address the extensive impact of coal mining on the environment, infrastructure, and overall safety, focusing on the Shigong River area above the working face. The study employs qualitative and quantitative analyses, along with on-site engineering measurements, to gather data on crucial parameters such as coal seam characteristics, roof rock lithology, thickness, water resistance, and structural damage degree. The research encompasses a multidisciplinary approach, involving mining, geology, hydrogeology, geophysical exploration, rock mechanics, mine surveying, and computational mathematics. The importance of effective safety measures and prevention techniques is emphasized, laying the foundation for research focused on the Xingyun coal mine. The brief concludes by highlighting the potential economic and social benefits of this project and its contribution to valuable experience for future subsea coal mining. 展开更多
关键词 coal mining-Induced Surface Subsidence Ecological and Infrastructural Challenges Safe mining Practices Underwater Conditions Multidisciplinary Approach Safety Measures Prevention Techniques
下载PDF
InSAR-derived surface deformation characteristics and mining subsidence parameters in mountain coal mines
2
作者 JIANG Xiaowei SHI Wenbing +2 位作者 LIANG Feng GUI Jingjing LI Jiawei 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3139-3156,共18页
Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to S... Mining-induced surface deformation disrupts ecological balance and impedes economic progress.This study employs SBAS-InSAR with 107-view of ascending and descending SAR data from Sentinel-1,spanning February 2017 to September 2020,to monitor surface deformation in the Fa’er Coal Mine,Guizhou Province.Analysis on the surface deformation time series reveals the relationship between underground mining and surface shifts.Considering geological conditions,mining activities,duration,and ranges,the study determines surface movement parameters for the coal mine.It asserts that mining depth significantly influences surface movement parameters in mountainous mining areas.Increasing mining depth elevates the strike movement angle on the deeper side of the burial depth by 22.84°,while decreasing by 7.74°on the shallower side.Uphill movement angles decrease by 4.06°,while downhill movement angles increase by 15.71°.This emphasizes the technology's suitability for local mining design,which lays the groundwork for resource development,disaster prevention,and ecological protection in analogous contexts. 展开更多
关键词 Time-series InSAR Surface deformation Subsurface mining mining subsidence
下载PDF
Development and prospect on fully mechanized mining in Chinese coal mines 被引量:104
3
作者 Jinhua Wang 《International Journal of Coal Science & Technology》 EI CAS 2014年第3期253-260,共8页
Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new de... Fully mechanized mining(FMM)technology has been applied in Chinese coal mines for more than 40 years.At present,the output of a FMM face has reached 10-million tons with Chinese-made equipment.In this study,the new developments in FMM technology and equipment in Chinese coal mines during past decades are introduced.The automatic FMM technology for thin seams,complete sets of FMM technology with ultra large shear height of 7 m for thick seams,complete sets of fully mechanized top coal caving technology with large shear height for ultra-thick seams of 20 m,complete sets of FMM technology for complex and difficult seams,including steeply inclined seams,soft coal seams with large inclination angle,and the mechanized filling mining technology and equipment are presented.Some typical case studies are also introduced.Finally,the existing problems with the FMM technology are discussed,and prospect of FMM technology and equipment applied in Chinese coal mines is put forward. 展开更多
关键词 Fully mechanized mining mining with large shear height Fully mechanized top coal caving Steeply inclined seam Back filling mining PROSPECT
下载PDF
Environmental assessment and nano-mineralogical characterization of coal,overburden and sediment from Indian coal mining acid drainage 被引量:12
4
作者 Madhulika Dutta Jyotilima Saikia +5 位作者 Silvio R.Taffarel Frans B.Waanders Diego de Medeiros Cesar M.N.L.Cutruneo Luis F.O.Silva Binoy K.Saikia 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第6期1285-1297,共13页
The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that cont... The deterioration of environmental conditions is the major contributory factor to poor health and quality of life that hinders sustainable development in any region.Coal mining is one of the major industries that contribute to the economy of a country but it also impacts the environment.The chemical parameters of the coal,overburden,soil and sediments along with the coal mine drainage(CMD)were investigated in order to understand the overall environmental impact from high sulphur coal mining at northeastern coalfield(India).It was found that the total sulphur content of the coal is noticeably high compared to the overburden(OB)and soil.The volatile matter of the coal is sufficiently high against the high ash content of the soil and overburden.The water samples have a High Electrical Conductivity(EC)and high Total Dissolve Solid(TDS).Lower values of pH,indicate the dissolution of minerals present in the coal as well as other minerals in the mine rejects/overburden.The chemical and nano-mineralogical composition of coal,soil and overburden samples was studied using a High Resolution-Transmission Electron Microscopy(HR-TEM),Energy Dispersive Spectroscopy(EDS),Selected-Area Diffraction(SAED),Field Emission-Scanning Electron Microscopy(FE-SEM)/EDS,X-ray diffraction(XRD),Fourier Transform Infrared Spectroscopy(FTIR),Raman and Ion-Chromatographic analysis,and Mossbauer spectroscopy.From different geochemical analysis it has been found that the mine water sample from Ledo colliery has the lowest pH value of 3.30,Tirap colliery samples have the highest electrical conductivity value of5.40 ms cm^(-1)Both Ledo and Tirap coals have total sulphur contents within the range 3-3.50%.The coal mine water from Tirap colliery(TW-15 B)has high values of Mg^(2+)(450 ppm),and Br^-(227.17 ppm).XRD analysis revealed the presence of minerals including quartz and hematite in the coals.Mineral analysis of coal mine overburden(OB)indicates the presence both of pyrite and marcasite which was also confirmed in XRD and Mossbauer spectral analysis.The presented data of the minerals and ultra/nano-particles present shows their ability to control the mobility of hazardous elements,suggesting possible use in environmental management technology,including restoration of the delicate Indian coal mine areas. 展开更多
关键词 coal mine drainage Environmental assessment INDIAN coal Chemical analysis Nano-mineralogy Advance characterization
下载PDF
Instability mechanism of mining roadway passing through fault at different angles in kilometre-deep mine and control measures of roof cutting and NPR cables 被引量:2
5
作者 SUN Xiaoming WANG Jian +6 位作者 ZHAO Wenchao MING Jiang ZHANG Yong LI Zhihu MIAO Chengyu GUO Zhibiao HE Manchao 《Journal of Mountain Science》 SCIE CSCD 2024年第1期236-251,共16页
The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and ... The angle α between the fault strike and the axial direction of the roadway produces different damage characteristics. In this paper, the research methodology includes theoretical analyses, numerical simulations and field experiments in the context of the Daqiang coal mine located in Shenyang, China. The stability control countermeasure of "pre-splitting cutting roof + NPR anchor cable"(PSCR-NPR) is simultaneously proposed. According to the different deformation characteristics of the roadway, the faults are innovatively classified into three types, with α of type I being 0°-30°, α of type II being 30°-60°, and α of type III being 60°-90°. The full-cycle stress evolution paths during mining roadway traverses across different types of faults are investigated by numerical simulation. Different pinch angles α lead to high stress concentration areas at different locations in the surrounding rock. The non-uniform stress field formed in the shallow surrounding rock is an important reason for the instability of the roadway. The pre-cracked cut top shifted the high stress region to the deep rock mass and formed a low stress region in the shallow rock mass. The high prestressing NPR anchor cable transforms the non-uniform stress field of the shallow surrounding rock into a uniform stress field. PSCR-NPR is applied in the fault-through roadway of Daqiang mine. The low stress area of the surrounding rock was enlarged by 3-7 times, and the cumulative convergence was reduced by 45%-50%. It provides a reference for the stability control of the deep fault-through mining roadway. 展开更多
关键词 Kilometre-deep mine Fault mining roadway Failure mechanism Pre-splitting cutting roof High pre-stress NPR anchor cable
下载PDF
Mining pressure monitoring and analysis in fully mechanized backfilling coal mining face-A case study in Zhai Zhen Coal Mine 被引量:14
6
作者 张强 张吉雄 +2 位作者 康涛 孙强 李伟康 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1965-1972,共8页
Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic pr... Fully mechanized solid backfill mining(FMSBM) technology adopts dense backfill body to support the roof. Based on the distinguishing characteristics and mine pressure control principle in this technology, the basic principles and methods for mining pressure monitoring were analyzed and established. And the characteristics of overburden strata movement were analyzed by monitoring the support resistance of hydraulic support, the dynamic subsidence of immediate roof, the stress of backfill body, the front abutment pressure, and the mass ratio of cut coal to backfilled materials. On-site strata behavior measurements of 7403 W solid backfilling working face in Zhai Zhen Coal Mine show that the backfill body can effectively support the overburden load, obviously control the overburden strata movement, and weaken the strata behaviors distinctly. Specific performances are as follows. The support resistance decreases obviously; the dynamic subsidence of immediate roof keeps consistent to the variation of backfill body stress, and tends to be stable after the face retreating to 120-150 m away from the cut. The peak value of front abutment pressure arises at 5-12 m before the operating face, and mass ratio is greater than the designed value of 1.15, which effectively ensures the control of strata movement. The research results are bases for intensively studying basic theories of solid backfill mining strata behaviors and its control, and provide theoretical guidance for engineering design in FMSBM. 展开更多
关键词 fully mechanized solid backfill mining(FMSBM) strata movement strata behavior mining pressure monitoring
下载PDF
Comparative study of mining methods for reserves beneath end slope in flat surface mines with ultra-thick coal seams 被引量:2
7
作者 Zha Zhengao Ma Li +2 位作者 Li Kemin Ding Xiaohua Xiao Shuangshuang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期1065-1071,共7页
The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t... The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM. 展开更多
关键词 Ultra-thick coal SEAM END wall in surface mine Highwall mining System Local STEEP SLOPE Resource exploitation
下载PDF
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage
8
作者 Angana Mahanta Debashis Sarmah +6 位作者 Nilotpol Bhuyan Monikankana Saikia Sarat Phukan K.S.V.Subramanyam Ajit Singh Prasenjit Saikia Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期133-147,共15页
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain... Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water. 展开更多
关键词 Opencast mining Pyrite oxidation coal geochemistry coal petrology Rare earth elements AMD remediation
下载PDF
Stability analysis of rib pillars in highwall mining under dynamic and static loads in open‑pit coal mine 被引量:5
9
作者 Haoshuai Wu Yanlong Chen +3 位作者 Haoyan Lv Qihang Xie Yuanguang Chen Jun Gu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期120-135,共16页
The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static l... The retained coal in the end slope of an open-pit mine can be mined by the highwall mining techniques.However,the instability mechanism of the reserved rib pillar under dynamic loads of mining haul trucks and static loads of the overlying strata is not clear,which restricts the safe and efcient application of highwall mining.In this study,the load-bearing model of the rib pillar in highwall mining was established,the cusp catastrophe theory and the safety coefcient of the rib pillar were considered,and the criterion equations of the rib pillar stability were proposed.Based on the limit equilibrium theory,the limit stress of the rib pillar was analyzed,and the calculation equations of plastic zone width of the rib pillar in highwall mining were obtained.Based on the Winkler foundation beam theory,the elastic foundation beam model composed of the rib pillar and roof under the highwall mining was established,and the calculation equations for the compression of the rib pillar under dynamic and static loads were developed.The results showed that with the increase of the rib pillar width,the total compression of the rib pillar under dynamic and static loads decreases nonlinearly,and the compression of the rib pillar caused by static loads of the overlying strata and trucks has a decisive role.Numerical simulation and theoretical calculation were also performed in this study.In the numerical simulation,the coal seam with a buried depth of 122 m and a thickness of 3 m is mined by highwall mining techniques.According to the established rib pillar instability model of the highwall mining system,it is found that when the mining opening width is 3 m,the reasonable width of the rib pillar is at least 1.3 m,and the safety factor of the rib pillar is 1.3.The numerical simulation results are in good agreement with the results of theoretical calculation,which verifes the feasibility of the theoretical analysis of the rib pillar stability.This research provides a reference for the stability analysis of rib pillars under highwall mining. 展开更多
关键词 Open-pit coal mine Dynamic and static loads Highwall mining Rib pillar Catastrophe instability
下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
10
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic Genetic algorithm
下载PDF
Advancing respirable coal mine dust source apportionment:a preliminary laboratory exploration of optical microscopy as a novel monitoring tool
11
作者 Nestor Santa Emily Sarver 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期222-233,共12页
Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u... Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines. 展开更多
关键词 Polarized light microscopy Image processing Dust monitoring Respirable silica coal mining
下载PDF
Disaster prediction of coal mine gas based on data mining 被引量:4
12
作者 邵良杉 付贵祥 《Journal of Coal Science & Engineering(China)》 2008年第3期458-463,共6页
The technique of data mining was provided to predict gas disaster in view of the characteristics of coal mine gas disaster and feature knowledge based on gas disaster. The rough set theory was used to establish data m... The technique of data mining was provided to predict gas disaster in view of the characteristics of coal mine gas disaster and feature knowledge based on gas disaster. The rough set theory was used to establish data mining model of gas disaster prediction, and rough set attributes relations was discussed in prediction model of gas disaster to supplement the shortages of rough intensive reduction method by using information en- tropy criteria.The effectiveness and practicality of data mining technology in the prediction of gas disaster is confirmed through practical application. 展开更多
关键词 disaster prediction coal mine gas data mining rough set theory
下载PDF
Mechanisms of support failure and prevention measures under double-layer room mining gobs——A case study: Shigetai coal mine 被引量:4
13
作者 Defu Zhu Shihao Tu +1 位作者 Hongsheng Tu Zhenqian Yang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第6期955-962,共8页
In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing supp... In the practice of mining shallow buried ultra-close seams,support failure tends to occur during the process of longwall undermining beneath two layers of room mining goaf(TLRMG).In this paper,the factors causing support failure are summarized into geology and mining technology.Combining column lithology and composite beam theory,the key stratum of the rock strata is determined.A finite element numerical simulation is used to analyze the overlying load distribution rule of the main roof for different plane positions of the upper and lower room mining pillars.The tributary area theory(TAT)is adopted to analyze the vertical load distribution of each pillar,and dynamic models of coal pillar instability and main roof fracture are established.Through key block instability analysis,two critical moments are established,of which critical moment A has the greater dynamic load strength.Great economic losses and safety hazards are created by the dynamic load of the fracturing of the main roof.To reduce these negative effects,a method of pulling out supports is developed and two alternative measures for support failure prevention are proposed:reinforcing stope supports in conjunction with reducing mining height,or drilling ground holes to pre-split the main roof.Based on a comprehensive consideration of economic factors and the two categories of support failure causes,the method of reinforcing stope supports while reducing mining height was selected for use on the mining site. 展开更多
关键词 Multiple ROOM mining GOAF Mechanism of supports FAILURE Numerical simulation Prevention measure
下载PDF
Ground fissure development regularity and formation mechanism of shallow buried coal seam mining with Karst landform in Jiaozi coal mine: a case study 被引量:1
14
作者 ZHU Heng-zhong 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3101-3120,共20页
A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geogr... A comprehensive study was undertaken at Jiaozi coal mine to investigate the development regularity of ground fissures in shallow buried coal seam mining with Karst landform,shedding light on the development type,geographical distribution,dynamic development process,and failure mechanism of these ground fissures by employing field monitoring,numerical simulation,and theoretical analysis.The findings demonstrate that ground fissure development has an obvious feature of subregion,and its geographical distribution is significantly affected by topography.Tensile type,open type,and stepped type are three different categories of ground fissure.Ground fissures emerge dynamically as the panel advances,and they typically develop with a distance of less than periodic weighting step distance in advance of panel advancing position.Ground fissures present the dynamic development feature,temporary fissure has the ability of self-healing.The dynamic development process of ground fissure with closed-distance coal seam repeated mining is expounded,and the development scale is a dynamic development stage of“closure→expansion→stabilized”on the basis of the original development scale.From the perspective of topsoil deformation,the computation model considering two points movement vectors towards two directions of the gob and the ground surface is established,the development criterion considering the critical deformation value of topsoil is obtained.The mechanical model of hinged structure of inclined body is proposed to clarify the ground fissure development,and the interaction between slope activity and ground fissure development is expounded.These research results fulfill the gap of ground fissures about development regularity and formation mechanism,and can contribute to ground fissure prevention and treatment with Karst landform. 展开更多
关键词 Karst landform Shallow buried coal seam Development regularity Formation mechanism Ground fissure Repeated mining
下载PDF
The adjusting mining technology of combining fully mechanized with individual prop,rotating,hilt,irregular form,and double unit face on thin coal seam of Tianchen Mine 被引量:1
15
作者 宋华岭 温国锋 李金克 《Journal of Coal Science & Engineering(China)》 2008年第1期44-48,共5页
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This inno... Analyzed the situations and characteristics of thin coal seam mining and its mining technologies,and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China.This innovation technology combined the fully mechanized mining with individual props,and the working face of mining is over length,irregular form and double units.The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology.The detail technologies,such as outlays of working face and ways,mining methods,equipments of cutting,transporting and sporting,have been introduced.So that,using the synthetic and creative mining tech- nologies,Tianchen Coal Mine solves the mining problems of thin coal seam successfully. 展开更多
关键词 mining of thin coal seam double unit face rotational and adjusting mining
下载PDF
Organic petrographic and mineralogical composition of the No. 6 coal seam of the Soutpansberg Coalfield, South Africa: Insights into paleovegetation and depositional environment
16
作者 Sanki Biswas Nicola J.Wagner Ofentse M.Moroeng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期190-207,共18页
This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic p... This study investigates the paleodepositional conditions of the No.6 Seam of the Madzaringwe Formation in Makhado and Voorburg south area of the Soutpansberg Coalfield(Limpopo Province,South Africa)utilizing organic petrography and inorganic geochemical proxies.The coals are predominantly high-volatile bituminous B-A rank with high ash yields(avg.36.1 wt%),characterized by high-vitrinite(~41.5 vol%),moderate-to-high inertinite(9.8 vol%–33.7 vol%)and low liptinite(~2.3 vol%).The distribution of inertinite varies among different coal horizons(from bottom-lower to middle-upper),suggesting differential oxidation conditions and/or paleofire occurrence.Vitrinite-to-inertinite(V/I)ratio,tissue preservation–gelification index(TPI–GI),and groundwater–vegetation index(GWI–VI)plots,indicate that the peat-forming forest-swamp vegetation accumulated under mesotrophic-to-rheotrophic hydrological conditions.The presence of structured macerals(i.e.,telinite,collotelinite,fusinite,and semifusinite)suggests well-preserved plant tissues,whereas framboidal pyrite and sulphur content(0.24 wt%–2.16 wt%)point to brackish-water influence at the peat stage.The coals contain quartz,kaolinite,siderite,muscovite,dolomite,calcite,and pyrite minerals,most of which were likely sourced from felsic igneous rocks.The Al/(Al+Fe+Mn)and(Fe+Mn)/Ti ratios for the studied samples range between 0.24–0.97 and 0.57–70.10,respectively.The ratios,Al–Fe–Mn plot,and presence of massive botryoidal-type pyrite imply some influence of meteoric waters or fluids from hydrothermal activity post-deposition.Moreover,the chemical index of alteration(CIA:98.25–99.67),chemical index of weathering(CIW:92.04–97.66),and A–CN–K ternary diagram suggest inorganic matter suffered strong chemical weathering,indicating warm paleoclimatic conditions during the coal formation. 展开更多
关键词 MACERALS coal facies Geochemical-indices Hydrothermal Madzaringwe formation Soutpansberg coalfield
下载PDF
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
17
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine Soil stoichiometry Soil enzyme activities DISTANCE GRASSLAND
下载PDF
Feasibility study of highwall mining in north surface mine of Yima Coal Corporation, China 被引量:1
18
作者 GuomingCheng SitingWang MeifengCai 《Journal of University of Science and Technology Beijing》 CSCD 2003年第6期1-4,共4页
Yima Coal Corporation is considering to adopt highwall mining method withauger machine to recover coal from north surface pit that has reached final highwall position. Themajor geomechanical issues associated with aug... Yima Coal Corporation is considering to adopt highwall mining method withauger machine to recover coal from north surface pit that has reached final highwall position. Themajor geomechanical issues associated with auger mining are highwall and pillar stability. Based onthe field investigation and laboratory test results of mechanical parameters, numerical modeling iscarried out to assess the stability of highwall and pillar. Field measurements of highwalldeformation have been used to validate and ensure the confidence for the development of realisticmodels. The results of numerical modeling show that the mining method is feasible for mining theseam of 10 m thickness in north surface coal mine. 展开更多
关键词 highwall mining surface mine stability evaluation feasibility study
下载PDF
Coordinated Mining Procedures of Open Pit Mines Based on River Management
19
作者 Baoyu CAO Zhiyong ZHANG +2 位作者 Bo WANG Ruirong DONG Hongjian WANG 《Asian Agricultural Research》 2024年第5期11-14,19,共5页
This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify... This paper primarily concerns the effective coordination of the procedures and methods employed in open pit mining operations under the background of river management.The central objective of this study is to identify a viable approach for ensuring rational and efficient development of open pit mineral resources while simultaneously protecting and restoring the ecological environment of the river.This approach should facilitate the realization of a harmonious symbiosis between mining and river management.The intricate mutual influence relationship between river management and open pit mining is first analyzed in depth,which provides a solid foundation for the subsequent coordination strategy development.In light of the aforementioned considerations,a set of coordination procedures for open pit mining based on river management conditions is proposed.These procedures emphasize the integration of river protection into the overall layout of mining at the planning stage.The implementation of scientific mining schemes,accompanied by rigorous control of the scope and depth of mining operations,has proven to be an effective means of reducing the impact of mining activities on river environments.This approach has also facilitated the achievement of a balance and coordination between mining and river management. 展开更多
关键词 River management Open pit mine mining procedure Coordinated mining
下载PDF
Analysis of the Risk of Water Breakout in the Bottom Plate of High-Intensity Mining of Extra-Thick Coal Seams
20
作者 Shuo Wang Hongdong Kang Xinchen Wang 《Journal of Geoscience and Environment Protection》 2024年第5期81-91,共11页
In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site moni... In order to clarify the danger of water breakout in the bottom plate of extra-thick coal seam mining, 2202 working face of a mine in the west is taken as the research object, and it is proposed to use the on-site monitoring means combining borehole peeping and microseismic monitoring, combined with the theoretical analysis to analyze the danger of water breakout in the bottom plate. The results show that: 1) the theoretically calculated maximum damage depth of the bottom plate is 27.5 m, and its layer is located above the Austrian ash aquifer, which has the danger of water breakout;2) the drill hole peeping at the bottom plate of the working face shows that the depth of the bottom plate fissure development reaches 26 m, and the integrity of the water barrier layer has been damaged, so there is the risk of water breakout;3) for the microseismic monitoring of the anomalous area, the bottom plate of the return air downstream channel occurs in the field with a one-week lag, which shows that microseismic monitoring events may reflect the water breakout of the underground. This shows that the microseismic monitoring events can reflect the changes of the underground flow field, which can provide a reference basis for the early warning of water breakout. The research results can provide reference for the prediction of sudden water hazard. 展开更多
关键词 Extra-Thick coal Seam High-Intensity mining Microseismic Monitoring Water-Surge Hazard Borehole Peeping
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部