Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence s...Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.展开更多
[Objective] This study aimed to investigate the effect of leaf size on fruit quality of kiwi and relevant mechanism. [Method] The correlation between leaf shape and fruit quality of kiwi was studied during 2013-2015. ...[Objective] This study aimed to investigate the effect of leaf size on fruit quality of kiwi and relevant mechanism. [Method] The correlation between leaf shape and fruit quality of kiwi was studied during 2013-2015. [Result] The results of statistical analysis showed that the sing weight, longitudinal diameter, width, thickness, shape index and juice sugar content of fruit were 75.86±1.68 g, 73.284± 0.70 mm, 41.18±0.51 mm, 35.30±0.25 mm, 1.92±0.01 and (15.66±0.26)%, respec- tively; the length, width, shape index and area of leaf were 14.77±0.20 cm, 14.25± 0.16 cm, 0.94±0.09 and 152.39±3.26 cm^2, respectively; and the length and diameter of petiole were 11.03±0.25 cm and (31.50±0.79 mm)/10, respectively. The results of correlation analysis showed that the single fruit weight of kiwi was strongly positively related to fruit longitudinal diameter, fruit width, fruit thickness and leaf shape index, was significantly positively related to leaf length, was weakly positively related to petiole length, was positively related to leaf area, was weakly negatively related to leaf width and petiole diameter, and was negatively related to juice sugar content. The results of regression analysis showed that there was significant difference be- tween single fruit weight and juice sugar content (F=0.851 8, P〈0.01), instead of fruit longitudinal diameter (F=0.000 6, P〉0.05), fruit width (F=0.001 4, P〉0.05) and fruit thickness (F=0.005 4, P〉0.05); there was significant correlation between single fruit weight and leaf area (F=0.671 5, P〈0.01), instead of leaf length (F=0.139 3, P〉0.05), leaf width (F=0.358 5, P〉0.05) and leaf shape index (F=0.294 0, P〉0.05); there were significant correlations between juice sugar content and leaf length (F= 0.816 1, P〈0.01), leaf width (F=0.970 1, P〈0.01), leaf area (F=0.560 6, P〈0.01) and leaf shape index (F=0.885 1, P〈0.05). [Conclusion] Fruit single weight and oth- er quality properties could be predicted from leaf size, and leaf size can be used as the main basis for judging the quality of fruit.展开更多
Taken kiwi fruit as raw material, this paper extracted kiwi fruit seed oil with ultrasonic-assisted enzyme, researched the influence of factors such as liquid-to-solid ratio, granularity, type of enzyme, ultrasonic po...Taken kiwi fruit as raw material, this paper extracted kiwi fruit seed oil with ultrasonic-assisted enzyme, researched the influence of factors such as liquid-to-solid ratio, granularity, type of enzyme, ultrasonic power, treating time, enzymolysis temperature, enzymolysis time, pH and enzyme additive on oil extraction, and optimized the extracting technology of kiwi fruit seed oil with response surface method. The result shows that the best technical parameter is: material granularity: 60, liquid-to-solid ratio: 1:10 (g/mL), ultrasonic power: 400 W, treating time: 30 min, enzyme amount: 2.50%, pH: 9.2, enzymolysis temperature: 53°C, enzymolysis time: 2.80 h;and the extracting ratio under such condition is 92.57%.展开更多
The experiment adopts complex coacervation to prepare microcapsules. Through the experimental comparison, soybean protein isolated-maltodextrin is determined as the wall material for the experimental preparation of th...The experiment adopts complex coacervation to prepare microcapsules. Through the experimental comparison, soybean protein isolated-maltodextrin is determined as the wall material for the experimental preparation of the microcapsules of kiwi fruit seed oil. This paper researched the effects of wall material concentration, core wall ratio and other factors on complex coacervation of kiwi fruit seed oil microcapsules embedding rate, determining that the best wall material concentration is 1%, core wall ratio is 1:1, and the optimum pH ratio is 3.0, temperature is 40°C, and the optimum curing time is 6 hours. The experiment carried out half life research on the microcapsules prepared by the complex coacervation of kiwi fruit seed oil microcapsule. By calculation: the degradation rate constant of kiwi fruit seed oil microcapsules prepared by complex coacervation is 2.793. According to the regression equation it can calculate the half life of kiwi fruit seed oil microcapsules is 18.58 months, about a year and a half.展开更多
Based on the overview of researches on circulation channel of agricultural products,this article presents the status quo of circulation channel of Dujiangyan kiwi fruit,including the production and circulation pattern...Based on the overview of researches on circulation channel of agricultural products,this article presents the status quo of circulation channel of Dujiangyan kiwi fruit,including the production and circulation pattern of Dujiangyan kiwi fruit. Then it analyzes the problems in the current circulation channel of Dujiangyan kiwi fruit as follows: first,the long circulation channel leads to inefficient circulation and high costs; second,the deep processing capacity is poor,and the added value of fruits is low; third,the application of cold chain logistics technology is insufficient; fourth, blocked information circulation makes the cooperative relations between the subjects in channel fragile. Finally corresponding countermeasures and recommendations are put forward as follows: shortening circulation channel and improving circulation efficiency; improving deep processing capacity,and increasing added value of fruits; strengthening the use of cold chain logistics technology and equipments; establishing rational interest distribution mechanism,and consolidating cooperation between the circulation subjects.展开更多
The vitamin C rich-kiwi fruit-the king of fruits-is good to taste but hard to store. Only a few countries can prevent mildew on the fruit stalk during the storage process. The fresh-keeping technology developed by the...The vitamin C rich-kiwi fruit-the king of fruits-is good to taste but hard to store. Only a few countries can prevent mildew on the fruit stalk during the storage process. The fresh-keeping technology developed by the Shaanxi Teachers University has enabled China to catch up with the advanced countries in this field.展开更多
文摘Many properties of fruit are influenced by plant nutrition. Fruit firmness is one of the most important fruit characteristics and determines post-harvest life of the fruit, in recent decades, artificial intelligence systems were employed for developing predictive models to estimate and predict many agriculture processes. In the present study, the predictive capabilities of multiple linear regressions (MLR) and artificial neural networks (ANNs) are evaluated to estimate fruit firmness in six months, including each of nutrients concentrations (nitrogen (N), potassium (K), calcium (Ca) and magnesium (Mg)) alone (P1), com- bination of nutrients concentrations (P2), nutrient concentration ratios alone (P3), and combination of nutrient concentrations and nutrient concentration ratios (P4). The results showed that MLR model estimated fruit firmness more accuracy than ANN model in three datasets (P1, P2 and P4). However, the application of P3 (N/Ca ratio) as the input dataset in ANN model improved the prediction of fruit firmness than the MLR model. Correlation coefficient and root mean squared error (RMSE) were 0.850 and 0.539 between the measured and the estimated data by the ANN model, respectively. Generally, the ANN model showed greater potential in determining the relationship between 6-mon-fruit firmness and nutrients concentration.
文摘[Objective] This study aimed to investigate the effect of leaf size on fruit quality of kiwi and relevant mechanism. [Method] The correlation between leaf shape and fruit quality of kiwi was studied during 2013-2015. [Result] The results of statistical analysis showed that the sing weight, longitudinal diameter, width, thickness, shape index and juice sugar content of fruit were 75.86±1.68 g, 73.284± 0.70 mm, 41.18±0.51 mm, 35.30±0.25 mm, 1.92±0.01 and (15.66±0.26)%, respec- tively; the length, width, shape index and area of leaf were 14.77±0.20 cm, 14.25± 0.16 cm, 0.94±0.09 and 152.39±3.26 cm^2, respectively; and the length and diameter of petiole were 11.03±0.25 cm and (31.50±0.79 mm)/10, respectively. The results of correlation analysis showed that the single fruit weight of kiwi was strongly positively related to fruit longitudinal diameter, fruit width, fruit thickness and leaf shape index, was significantly positively related to leaf length, was weakly positively related to petiole length, was positively related to leaf area, was weakly negatively related to leaf width and petiole diameter, and was negatively related to juice sugar content. The results of regression analysis showed that there was significant difference be- tween single fruit weight and juice sugar content (F=0.851 8, P〈0.01), instead of fruit longitudinal diameter (F=0.000 6, P〉0.05), fruit width (F=0.001 4, P〉0.05) and fruit thickness (F=0.005 4, P〉0.05); there was significant correlation between single fruit weight and leaf area (F=0.671 5, P〈0.01), instead of leaf length (F=0.139 3, P〉0.05), leaf width (F=0.358 5, P〉0.05) and leaf shape index (F=0.294 0, P〉0.05); there were significant correlations between juice sugar content and leaf length (F= 0.816 1, P〈0.01), leaf width (F=0.970 1, P〈0.01), leaf area (F=0.560 6, P〈0.01) and leaf shape index (F=0.885 1, P〈0.05). [Conclusion] Fruit single weight and oth- er quality properties could be predicted from leaf size, and leaf size can be used as the main basis for judging the quality of fruit.
文摘Taken kiwi fruit as raw material, this paper extracted kiwi fruit seed oil with ultrasonic-assisted enzyme, researched the influence of factors such as liquid-to-solid ratio, granularity, type of enzyme, ultrasonic power, treating time, enzymolysis temperature, enzymolysis time, pH and enzyme additive on oil extraction, and optimized the extracting technology of kiwi fruit seed oil with response surface method. The result shows that the best technical parameter is: material granularity: 60, liquid-to-solid ratio: 1:10 (g/mL), ultrasonic power: 400 W, treating time: 30 min, enzyme amount: 2.50%, pH: 9.2, enzymolysis temperature: 53°C, enzymolysis time: 2.80 h;and the extracting ratio under such condition is 92.57%.
文摘The experiment adopts complex coacervation to prepare microcapsules. Through the experimental comparison, soybean protein isolated-maltodextrin is determined as the wall material for the experimental preparation of the microcapsules of kiwi fruit seed oil. This paper researched the effects of wall material concentration, core wall ratio and other factors on complex coacervation of kiwi fruit seed oil microcapsules embedding rate, determining that the best wall material concentration is 1%, core wall ratio is 1:1, and the optimum pH ratio is 3.0, temperature is 40°C, and the optimum curing time is 6 hours. The experiment carried out half life research on the microcapsules prepared by the complex coacervation of kiwi fruit seed oil microcapsule. By calculation: the degradation rate constant of kiwi fruit seed oil microcapsules prepared by complex coacervation is 2.793. According to the regression equation it can calculate the half life of kiwi fruit seed oil microcapsules is 18.58 months, about a year and a half.
基金Supported by Social Science Foundation of Sichuan Center for Rural Development Research ( CR1021)
文摘Based on the overview of researches on circulation channel of agricultural products,this article presents the status quo of circulation channel of Dujiangyan kiwi fruit,including the production and circulation pattern of Dujiangyan kiwi fruit. Then it analyzes the problems in the current circulation channel of Dujiangyan kiwi fruit as follows: first,the long circulation channel leads to inefficient circulation and high costs; second,the deep processing capacity is poor,and the added value of fruits is low; third,the application of cold chain logistics technology is insufficient; fourth, blocked information circulation makes the cooperative relations between the subjects in channel fragile. Finally corresponding countermeasures and recommendations are put forward as follows: shortening circulation channel and improving circulation efficiency; improving deep processing capacity,and increasing added value of fruits; strengthening the use of cold chain logistics technology and equipments; establishing rational interest distribution mechanism,and consolidating cooperation between the circulation subjects.
文摘The vitamin C rich-kiwi fruit-the king of fruits-is good to taste but hard to store. Only a few countries can prevent mildew on the fruit stalk during the storage process. The fresh-keeping technology developed by the Shaanxi Teachers University has enabled China to catch up with the advanced countries in this field.