In this study, several typical tralts of weedy rice and its damage charac-teristics were analyzed. The resuIts showed that the shattering of weedy rice was sometimes weaker than that of conventional rice. The newIy-ha...In this study, several typical tralts of weedy rice and its damage charac-teristics were analyzed. The resuIts showed that the shattering of weedy rice was sometimes weaker than that of conventional rice. The newIy-harvested weedy rice seeds have certaln dormant period and a Iong active period, whiIe the conventional rice seeds have no dormant period but have a Iimited active period. In the direct seeding and intercropping rice fields where weedy rice occurs seriousIy Iast year, if not controI ed timeIy, weedy rice may caused a damage above 28%, sometimes even above 99%. After one season of cuItivation, the underground weedy rice and conventional rice seeds wiI be carbonized, Iosing their activity. The germination of underground weedy rice can be first induced, and when the Iast-season wheat is harvested, the germinated weedy rice can be kiI ed with 41% gIyphosate (3 000 mI/hm2), thus the damage and expansion of weedy rice wiI be effectiveIy controI ed.展开更多
[Objective] This study aimed to investigate the effects of soaking cultivated rice seeds with fulvic acid (FA) on physiological and ecological properties of weedy rice in the direct seeding cultivated rice field. [M...[Objective] This study aimed to investigate the effects of soaking cultivated rice seeds with fulvic acid (FA) on physiological and ecological properties of weedy rice in the direct seeding cultivated rice field. [Method] Weedy rice JS-Y1 and culti-vated rice Nanjing 44 were used as experimental materials for field plot trials to an-alyze the effects of soaking cultivated rice seeds with 0 (water as control), 4, 6, 8 g/L FA on til ering dynamics, plant height, chlorophyl content, photosynthetic perfor-mance, gas exchange parameters and yield components of weedy rice at different growth stages. [Result] Among the 4 plants/m2 weedy rice plots, with the increase of FA concentration, til er number, plant height, chlorophyl content, net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of weedy rice were reduced. Under the 4-6 g/L FA concentration, til er numbers of weedy rice at differ-ent growth stages were reduced by 13.84%-35.71% compared with control at the same density and the most significant reduction was on the 22nd d after weedy rice germination; chlorophyl contents of weedy rice at the jointing stage were significant-ly reduced by 7.90%-8.88%. Furthermore, in the plots with 4 g/L FA, weedy rice plant heights at the heading stage and grain fil ing stage were significantly reduced by 6.37%-9.10%; Pn, Gs and Tr of weedy rice at the jointing stage and grain fil ing stage were significantly reduced by 10.19%-16.05%, 12.57%-23.33% and 10.28%-19.76%, respectively; 1 000-grain weight, effective panicle number per plant and panicles weight per plant of weedy rice at the maturity stage were significantly re-duced by 3.19%, 21.21% and 27.27%, correspondingly. [Conclusion] In 4 plants/m2 weedy rice plots, because soaking cultivated rice seeds with 4 g/L FA could regu-late the growth and development of cultivated rice, the soaking with FA could change the ecological relationship between cultivated rice and weedy rice, affect weedy rice physiological and ecological properties and al eviate the competitive inhi-bition of weedy rice on cultivated rice.展开更多
Microsatellite markers and morphological characteristics were used to explore the genetic diversity and possible origin of weedy rice in Taizhou City, Jiangsu Province, China. Fifty-two weedy rice (Oryza sativa L.) ac...Microsatellite markers and morphological characteristics were used to explore the genetic diversity and possible origin of weedy rice in Taizhou City, Jiangsu Province, China. Fifty-two weedy rice (Oryza sativa L.) accessions were compared with two wild rice, four hybrid rice and five cultivars using 22 simple sequence repeat (SSR) primer pairs. A total of 107 fragments were amplified, averaging 5.6 alleles per primer pair. The polymorphic index content (PIC) values ranged from 0.3077 to 0.7951, averaging at 0.5870. The average genetic distance of all samples ranged from 0.02 to 0.46 with an average of 0.262. The genetic distance among Taizhou weedy rice ranged from 0.03 to 0.44 with an average of 0.224. Cluster analysis showed that all the weedy rice accessions from Taizhou City were indica, and could be subdivided into different genotypes. The majority (86%) of weedy rice was most closely related to hybrid rice. The Taizhou weedy rice accessions were morphologically similar, but still could be delineated into indica or japonica group by some morphological traits. It is suggested that the levels of genetic and morphological diversities of weedy rice in Taizhou City are low and these weedy rice plants originated from the segregating progenies of hybrid rice that had naturally introgressed with cultivated rice.展开更多
Stacked(insect and herbicide resistant) transgenic rice T1c-19 with cry1C*/bar genes, its receptor rice Minghui 63(herein MH63) and a local two-line hybrid indica rice Fengliangyou Xiang 1(used as a control) we...Stacked(insect and herbicide resistant) transgenic rice T1c-19 with cry1C*/bar genes, its receptor rice Minghui 63(herein MH63) and a local two-line hybrid indica rice Fengliangyou Xiang 1(used as a control) were compared for agronomic performance under field conditions without the relevant selection pressures. Agronomic traits(plant height, tiller number, and aboveground dry biomass), reproductive ability(pollen viability, panicle length, and filled grain number of main panicles, seed set, and grain yield), and weediness characteristics(seed shattering, seed overwintering ability, and volunteer seedling recruitment) were used to assess the potential weediness without selection pressure of stacked transgene rice T1c-19. In wet direct-seeded and transplanted rice fields, T1c-19 and its receptor MH63 performed similarly regarding vegetative growth and reproductive ability, but both of them were significantly inferior to the control. T1c-19 did not display weed characteristics; it had weak overwintering ability, low seed shattering and failed to establish volunteers. Exogenous insect and herbicide resistance genes did not confer competitive advantage to transgenic rice T1c-19 grown in the field without the relevant selection pressures.展开更多
Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk beca...Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk because these hybrids could be more advantageous under specific environmental conditions. Evaluation of the potential environmental risk caused by stacked transgenes is essential for assessing the environmental consequences caused by crop-weed transgene flow. The agronomic performance of fitness-related traits was assessed in F1+(transgene positive) hybrids(using the transgenic line T1 c-19 as the paternal parent) in monoculture and mixed planting under presence or absence glufosinate pressure in the presence or absence of natural insect pressure and then compared with the performance of F1–(transgene negative) hybrids(using the non-transgenic line Minghui 63(MH63) as the paternal parent) and their weedy rice counterparts. The results demonstrated that compared with the F1– hybrids and weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) under natural insect pressure, respectively, lower performance(P<0.05) or non-significant changes(P>0.05) in the absence of insect pressure in monoculture planting, respectively. And compared to weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) in the presence or absence of insect pressure in mixed planting, respectively. The F1+ hybrids presented nonsignificant changes(P>0.05) under the presence or absence glufosinate pressure under insect or non-insect pressure in monoculture planting. The all F1+ hybrids and two of three F1– hybrids had significantly lower(P<0.05) seed shattering than the weedy rice counterparts. The potential risk of gene flow from T1 c-19 to weedy rice should be prevented due to the greater fitness advantage of F1 hybrids in the majority of cases.展开更多
The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequen...The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk of gene flow to weedy rice was higher than that of improved rice and hybrids. Greater resources must be dedicated to the management of remnant weedy rice in fields planted with herbicide-resistant rice, and to prevent the evolution of resistant weedy rice populations.展开更多
Rice,the main food crop in China,has been sporadically reported to suffer from weedy rice infestation.However,the overall occurrence and distribution pattern of Chinese weedy rice remains unclear because a systematic ...Rice,the main food crop in China,has been sporadically reported to suffer from weedy rice infestation.However,the overall occurrence and distribution pattern of Chinese weedy rice remains unclear because a systematic survey has not been conducted.In order to reveal the infestation of Chinese weedy rice,a field survey was conducted in 999 sampling sites all over the rice-growing regions in China from 2009 to 2016 using seven-scale visual scoring of the level of weed infestation.Weedy rice was found 39%occurrence incidence in a total of 387 sites.The sampling sites with 50%or higher overall weedy rice infestation index mainly radiated from Jiangsu,Heilongjiang,Ningxia and Guangdong to the whole East China,Northeast China,Northwest China and South China.A total of 45 morphological characters from 287 populations(collected simultaneously with the field survey)out of those occurred sites were observed and analyzed using multivariate analysis in common gardens with the same cultivation conditions in 2017 and 2019.Canonical correlation analysis showed that 45 morphological characters were significantly related to the latitude,mean temperature,minimum temperature,precipitation and mean diurnal range factors.The 287 weedy rice populations were divided into three morphological groups with climate-dependent geographical differentiation:strong tiller type only in Jiangsu,large leaf type in South China and Central China and large grain type mainly in North China.Weedy rice seriously infested rice fields and had a geography,climate and cultivated rice type-dependent morphological and biotype differentiation in China.It is suggested to pay attention to the harmfulness of weedy rice and adopt comprehensive control strategies.展开更多
Weedy rice exerts a severe impact on rice production by competing for sunlight, water and nutrients. This study assayed the population structure, genetic diversity and origin of Northeast Asia weedy rice by using 48 s...Weedy rice exerts a severe impact on rice production by competing for sunlight, water and nutrients. This study assayed the population structure, genetic diversity and origin of Northeast Asia weedy rice by using 48 simple sequence repeat markers. The results showed that weedy rice in Northeast Asia had a high genetic diversity, with Shannon's diversity index (I) of 0.748 and the heterozygosity (He) of 0.434. In each regional population, I value varied widely. The widest range of I (0.228-0.489) was observed in the weedy rice of Eastern China, which was larger than that of Northeast China and Korea (0.168-0.270). The F-statistics of regional populations (Fis, Fit and Fst) also showed higher values in the weedy rice of Eastern China than those of Northeast China and Korea All weedy rice accessions were grouped into two clusters in the unweighted pair group method with arithmetic mean cluster analysis dendrogram, namely Eastern China branch and Northeastern China plus Korea branch. There was significant differentiation in genetic characteristics in weedy rice of northeastern and eastern Asia, especially in Eastern China.展开更多
Weedy red rice(Oryza sativa;WRR),a close relative of cultivated rice,is a highly competitive weed that commonly infests rice fields and can also naturally interbreed with rice.Useful genes for biotic stress have been ...Weedy red rice(Oryza sativa;WRR),a close relative of cultivated rice,is a highly competitive weed that commonly infests rice fields and can also naturally interbreed with rice.Useful genes for biotic stress have been maintained in WRR and can be explored for breeding.Here we describe genetic and physiological traits of WRR that can be beneficial in preventing major rice diseases.Rice blast,caused by the hemibiotrophic fungal pathogen Magnaporthe oryzae,and sheath blight disease,caused by the necrotrophic pathogen Rhizoctonia solani,are the two most damaging biotic stresses of rice.Many major and minor resistance genes and QTL have been identified in cultivated and wild rice relatives.However,novel QTL were recently found in the two major U.S.biotypes of WRR,blackhull-awned(BH)and strawhullawnless(SH),suggesting that WRR has evolved novel genetic mechanisms to cope with these biotic stresses.Twenty-eight accessions of WRR(PI 653412–PI 653439)from the southern USA were characterized and placed in the National Small Grains Collection,and are available for identification of novel genetic factors to prevent biotic stress.展开更多
A long-red awn weedy rice and rice cultivars named Ken99004(ZCI), Crossing-503(ZC2), Ken Sticky Rice(ZC3), Shashani(ZC4), Long-Grain Aromatic Rice(ZC5) were used to study typical wild traits of weedy rice an...A long-red awn weedy rice and rice cultivars named Ken99004(ZCI), Crossing-503(ZC2), Ken Sticky Rice(ZC3), Shashani(ZC4), Long-Grain Aromatic Rice(ZC5) were used to study typical wild traits of weedy rice and to identify the cold resistance of all genotypes. The results showed that the stem of long-red awn weedy rice was the weakest. No difference was found in the early stage of rice growth, e.g. the vegetable growth stage, between long-red awn weedy rice and other rice cultivars in the stem rigidity, but in the later stage, or reproductive growth stage, their leaves and stems were senescent rapidly because of the speedy supply of nutrients for panicle growth, meanwhile the rigidity of stem was reduced sharply just as withered weeds. The germination rate of long- red awn weedy rice was the highest in cold condition, and in turn were ZCI, ZC2, ZC3, ZC4, ZC5, respectively. The performances of genotypes in cold tolerance were identical, those with a high ability of germination in low temperature also showed a strong cold tolerance in main traits in whole growth period, the order from strong to weak in the extent of cold tolerance were long-red awn weedy rice, ZCl, ZC2, ZC3, ZC4, ZC5, respectively展开更多
Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of c...Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of cultivated rice. To test this assumption, red rice and cultivated rice were grown in nutrient solution to compare their growth and physiological responses to N supply. Experimental design was a split-plot, where main plot factor was rice type (Stf-3, ‘Wells’);split-plot factor was N treatment [T1 (complete nutrient solution);T2 (–NH4NO3);T3 (+NH4NO3 for 24-h post-N deficiency);and T4 (+NH4NO3 for 48-h post-N deficiency)]. Nitrogen deficiency was defined as N sufficiency index (NSI) 4, Stf-3 showed higher increment in root length and surface area than Wells. Shoot tissue concentrations of N and total sugars were measured to determine physiological response in N-deficient and N-supplemented plants. Stf-3 had greater N and sucrose tissue concentrations at N-deficient conditions compared with Wells, implying a stress-adaptive molecular mechanism regulated by N and sucrose availability.展开更多
Weedy rice (Oryza sativa f. spontanea), the predominant type of which has a red pericarp, seriously inhibits growth and yield of direct-seeded rice in Jiangsu Province, China. In this study, we randomly selected 10 ...Weedy rice (Oryza sativa f. spontanea), the predominant type of which has a red pericarp, seriously inhibits growth and yield of direct-seeded rice in Jiangsu Province, China. In this study, we randomly selected 10 weedy rice accessions from 10 plots in Jiangsu, and then sequenced the full lengths of their Rc genes (approximately 6.4 kb). In addition, we collected 166 different full-length Rc genes in the Oryza genus from the literature and from GenBank. A collinearity sequence analysis showed that the 10 weedy rice accessions from Jiangsu all had the same wild-type allele of the Rc gene. Single nucleotide polymorphisms indicated that the nucleotide polymorphisms (π= 0.19) and the proportion of segregation sites (ew = 0.28) of the Rc genes in the 10 weedy rice accessions from Jiangsu were higher than those in 56 weedy rice accessions from USA (π = 0.09 and θw = 0.07). Haplotype and phylogenetic analyses showed that the Rc genes of weedy rice accessions from Jiangsu were not revertants of the rc gene found in Asian cultivated rice (O. sativa) varieties with white pericarp. In addition, Rc gene sequences of the rice varieties Lvdao from Lianyungang, Jiangsu and Tangdao from Anhui were more similar to those of cultivated rice than to the weedy rice from Jiangsu. These findings support the continued quarantine of weedy rice and clarify the evolutionary mechanism of the red pericarp found in the weedy rice of Jiangsu.展开更多
A study was undertaken in February 2012 to understand the knowledge and practices of rice farmers about weedy rice in two municipalities of Iloilo, Philippines. The specific objectives of the study were to establish w...A study was undertaken in February 2012 to understand the knowledge and practices of rice farmers about weedy rice in two municipalities of Iloilo, Philippines. The specific objectives of the study were to establish what rice farmers know about weedy rice, examine rice farmers’ practices in managing weedy rice, and recommend policies on weedy rice management based on the results of the study. Farmers’ knowledge of weedy rice did not differ much between two villages. Results showed that 41% from the second most affected village and 33% from the most affected village thought that weedy rice cannot reduce the market value of the harvested rice. Majority of the farmers (68%) responded that awns can be absent in some weedy rice and about 40% of the farmers did not know that seeds of weedy rice have dormancy. Cutting the weedy rice panicles at harvest, as the best way of reducing weedy rice, was practiced by majority of the respondents (82%) from the most affected village. Our study suggests that there is a need to increase awareness about weedy rice among Asian farmers.展开更多
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ...Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.展开更多
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improv...Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs.展开更多
Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibit...Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(13)3042]~~
文摘In this study, several typical tralts of weedy rice and its damage charac-teristics were analyzed. The resuIts showed that the shattering of weedy rice was sometimes weaker than that of conventional rice. The newIy-harvested weedy rice seeds have certaln dormant period and a Iong active period, whiIe the conventional rice seeds have no dormant period but have a Iimited active period. In the direct seeding and intercropping rice fields where weedy rice occurs seriousIy Iast year, if not controI ed timeIy, weedy rice may caused a damage above 28%, sometimes even above 99%. After one season of cuItivation, the underground weedy rice and conventional rice seeds wiI be carbonized, Iosing their activity. The germination of underground weedy rice can be first induced, and when the Iast-season wheat is harvested, the germinated weedy rice can be kiI ed with 41% gIyphosate (3 000 mI/hm2), thus the damage and expansion of weedy rice wiI be effectiveIy controI ed.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303022)National "Twelfth Five-year" Plan for Science & Technology Support Development Program of China(2012BAD19B02)Key Programs for Science and Technology Development of Anhui Province(1301032001)~~
文摘[Objective] This study aimed to investigate the effects of soaking cultivated rice seeds with fulvic acid (FA) on physiological and ecological properties of weedy rice in the direct seeding cultivated rice field. [Method] Weedy rice JS-Y1 and culti-vated rice Nanjing 44 were used as experimental materials for field plot trials to an-alyze the effects of soaking cultivated rice seeds with 0 (water as control), 4, 6, 8 g/L FA on til ering dynamics, plant height, chlorophyl content, photosynthetic perfor-mance, gas exchange parameters and yield components of weedy rice at different growth stages. [Result] Among the 4 plants/m2 weedy rice plots, with the increase of FA concentration, til er number, plant height, chlorophyl content, net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr) of weedy rice were reduced. Under the 4-6 g/L FA concentration, til er numbers of weedy rice at differ-ent growth stages were reduced by 13.84%-35.71% compared with control at the same density and the most significant reduction was on the 22nd d after weedy rice germination; chlorophyl contents of weedy rice at the jointing stage were significant-ly reduced by 7.90%-8.88%. Furthermore, in the plots with 4 g/L FA, weedy rice plant heights at the heading stage and grain fil ing stage were significantly reduced by 6.37%-9.10%; Pn, Gs and Tr of weedy rice at the jointing stage and grain fil ing stage were significantly reduced by 10.19%-16.05%, 12.57%-23.33% and 10.28%-19.76%, respectively; 1 000-grain weight, effective panicle number per plant and panicles weight per plant of weedy rice at the maturity stage were significantly re-duced by 3.19%, 21.21% and 27.27%, correspondingly. [Conclusion] In 4 plants/m2 weedy rice plots, because soaking cultivated rice seeds with 4 g/L FA could regu-late the growth and development of cultivated rice, the soaking with FA could change the ecological relationship between cultivated rice and weedy rice, affect weedy rice physiological and ecological properties and al eviate the competitive inhi-bition of weedy rice on cultivated rice.
基金supported by the National Natural Science Foundation of China (Grant No. 30571231)
文摘Microsatellite markers and morphological characteristics were used to explore the genetic diversity and possible origin of weedy rice in Taizhou City, Jiangsu Province, China. Fifty-two weedy rice (Oryza sativa L.) accessions were compared with two wild rice, four hybrid rice and five cultivars using 22 simple sequence repeat (SSR) primer pairs. A total of 107 fragments were amplified, averaging 5.6 alleles per primer pair. The polymorphic index content (PIC) values ranged from 0.3077 to 0.7951, averaging at 0.5870. The average genetic distance of all samples ranged from 0.02 to 0.46 with an average of 0.262. The genetic distance among Taizhou weedy rice ranged from 0.03 to 0.44 with an average of 0.224. Cluster analysis showed that all the weedy rice accessions from Taizhou City were indica, and could be subdivided into different genotypes. The majority (86%) of weedy rice was most closely related to hybrid rice. The Taizhou weedy rice accessions were morphologically similar, but still could be delineated into indica or japonica group by some morphological traits. It is suggested that the levels of genetic and morphological diversities of weedy rice in Taizhou City are low and these weedy rice plants originated from the segregating progenies of hybrid rice that had naturally introgressed with cultivated rice.
基金supported by the China Transgenic Organism Research and Commercialization Project (2016ZX08011-001)the National Natural Science Fund Project (31270579)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education, China (20130097130006)the 111 Project of China (B07030)
文摘Stacked(insect and herbicide resistant) transgenic rice T1c-19 with cry1C*/bar genes, its receptor rice Minghui 63(herein MH63) and a local two-line hybrid indica rice Fengliangyou Xiang 1(used as a control) were compared for agronomic performance under field conditions without the relevant selection pressures. Agronomic traits(plant height, tiller number, and aboveground dry biomass), reproductive ability(pollen viability, panicle length, and filled grain number of main panicles, seed set, and grain yield), and weediness characteristics(seed shattering, seed overwintering ability, and volunteer seedling recruitment) were used to assess the potential weediness without selection pressure of stacked transgene rice T1c-19. In wet direct-seeded and transplanted rice fields, T1c-19 and its receptor MH63 performed similarly regarding vegetative growth and reproductive ability, but both of them were significantly inferior to the control. T1c-19 did not display weed characteristics; it had weak overwintering ability, low seed shattering and failed to establish volunteers. Exogenous insect and herbicide resistance genes did not confer competitive advantage to transgenic rice T1c-19 grown in the field without the relevant selection pressures.
基金financially supported by the China Transgenic Organism Research and Commercialization Project (2016ZX08011-001)
文摘Compared to single-trait transgenic crops, stacked transgenic plants may be more prone to become weedy, and transgene flow from stacked transgenic plants to weedy relatives may pose a potential environmental risk because these hybrids could be more advantageous under specific environmental conditions. Evaluation of the potential environmental risk caused by stacked transgenes is essential for assessing the environmental consequences caused by crop-weed transgene flow. The agronomic performance of fitness-related traits was assessed in F1+(transgene positive) hybrids(using the transgenic line T1 c-19 as the paternal parent) in monoculture and mixed planting under presence or absence glufosinate pressure in the presence or absence of natural insect pressure and then compared with the performance of F1–(transgene negative) hybrids(using the non-transgenic line Minghui 63(MH63) as the paternal parent) and their weedy rice counterparts. The results demonstrated that compared with the F1– hybrids and weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) under natural insect pressure, respectively, lower performance(P<0.05) or non-significant changes(P>0.05) in the absence of insect pressure in monoculture planting, respectively. And compared to weedy rice counterparts, the F1+ hybrid presented higher performance(P<0.05) or non-significant changes(P>0.05) in the presence or absence of insect pressure in mixed planting, respectively. The F1+ hybrids presented nonsignificant changes(P>0.05) under the presence or absence glufosinate pressure under insect or non-insect pressure in monoculture planting. The all F1+ hybrids and two of three F1– hybrids had significantly lower(P<0.05) seed shattering than the weedy rice counterparts. The potential risk of gene flow from T1 c-19 to weedy rice should be prevented due to the greater fitness advantage of F1 hybrids in the majority of cases.
基金funded by the China Agriculture Research System (Grant No. CARS-01)Zhejiang Science and Technology Project of China (Grant No. 2008C22086)
文摘The development of transgenic rice with novel traits in China can increase rice productivity, but transgene flow to improved or weedy rice has become a major concern. We aimed to evaluate the potential maximum frequencies of transgene flow from glufosinate-resistant rice to improved rice cultivars and weedy rice. Treatments were arranged in randomized complete blocks with three replicates. Experiments were conducted between 2009 and 2010 at the Center for Environmental Safety Supervision and Inspection for Genetically Modified Plants, China National Rice Research Institute, Hangzhou, China. Glufosinate-resistant japonica rice 99-1 was the pollen donor. The pollen recipients were two inbred japonica rice (Chunjiang 016 and Xiushui 09), two inbred indica rice (Zhongzu 14 and Zhongzao 22), two indica hybrid rice (Zhongzheyou 1 and Guodao 1), and one weedy indica rice (Taizhou weedy rice). The offspring of recipients were planted in the field and sprayed with a commercial dose of glufosinate. Leaf tissues of survivors were analyzed by polymerase chain reaction to detect the presence of the transgene. The frequency of gene flow ranged from 0 to 0.488%. In 2009, the order of gene flow frequency was as follows: weedy rice 〉 Chunjiang 016 〉 Xiushui 09 and Zhongzu 14 〉 Guodao 1, Zhongzheyou 1 and Zhongzao 22. Gene flow frequencies were generally higher in 2009 than in 2010, but did not differ significantly among rice materials. Gene flow frequency was the highest in weedy rice followed by the inbred japonica rice. The risk of gene flow differed significantly between years and year-to-year variance could mask risk differences among pollen recipients. Gene flow was generally lesser in taller pollen recipients than in shorter ones, but plant height only accounted for about 30% of variation in gene flow. When flowering synchrony was maximized, as in this study, low frequencies of gene flow occurred from herbicide-resistant japonica rice to other cultivars and weedy rice. Averaged across years, the risk of gene flow to weedy rice was higher than that of improved rice and hybrids. Greater resources must be dedicated to the management of remnant weedy rice in fields planted with herbicide-resistant rice, and to prevent the evolution of resistant weedy rice populations.
基金supported by the Major Scientific and Technological Project of Hainan Province,China(ZDKJ202002)the China Transgenic Organism Research and Commercialization Project(2016ZX08011-001)the National Key Research and Development Program of China(2016YFD0200805).
文摘Rice,the main food crop in China,has been sporadically reported to suffer from weedy rice infestation.However,the overall occurrence and distribution pattern of Chinese weedy rice remains unclear because a systematic survey has not been conducted.In order to reveal the infestation of Chinese weedy rice,a field survey was conducted in 999 sampling sites all over the rice-growing regions in China from 2009 to 2016 using seven-scale visual scoring of the level of weed infestation.Weedy rice was found 39%occurrence incidence in a total of 387 sites.The sampling sites with 50%or higher overall weedy rice infestation index mainly radiated from Jiangsu,Heilongjiang,Ningxia and Guangdong to the whole East China,Northeast China,Northwest China and South China.A total of 45 morphological characters from 287 populations(collected simultaneously with the field survey)out of those occurred sites were observed and analyzed using multivariate analysis in common gardens with the same cultivation conditions in 2017 and 2019.Canonical correlation analysis showed that 45 morphological characters were significantly related to the latitude,mean temperature,minimum temperature,precipitation and mean diurnal range factors.The 287 weedy rice populations were divided into three morphological groups with climate-dependent geographical differentiation:strong tiller type only in Jiangsu,large leaf type in South China and Central China and large grain type mainly in North China.Weedy rice seriously infested rice fields and had a geography,climate and cultivated rice type-dependent morphological and biotype differentiation in China.It is suggested to pay attention to the harmfulness of weedy rice and adopt comprehensive control strategies.
基金funded by Shanghai Municipal Key Task Projects of Prospering Agriculture by Science and Technology Plan in China (Grant No. Hu Nong Ke Gong Zi 2008: 2-1)
文摘Weedy rice exerts a severe impact on rice production by competing for sunlight, water and nutrients. This study assayed the population structure, genetic diversity and origin of Northeast Asia weedy rice by using 48 simple sequence repeat markers. The results showed that weedy rice in Northeast Asia had a high genetic diversity, with Shannon's diversity index (I) of 0.748 and the heterozygosity (He) of 0.434. In each regional population, I value varied widely. The widest range of I (0.228-0.489) was observed in the weedy rice of Eastern China, which was larger than that of Northeast China and Korea (0.168-0.270). The F-statistics of regional populations (Fis, Fit and Fst) also showed higher values in the weedy rice of Eastern China than those of Northeast China and Korea All weedy rice accessions were grouped into two clusters in the unweighted pair group method with arithmetic mean cluster analysis dendrogram, namely Eastern China branch and Northeastern China plus Korea branch. There was significant differentiation in genetic characteristics in weedy rice of northeastern and eastern Asia, especially in Eastern China.
文摘Weedy red rice(Oryza sativa;WRR),a close relative of cultivated rice,is a highly competitive weed that commonly infests rice fields and can also naturally interbreed with rice.Useful genes for biotic stress have been maintained in WRR and can be explored for breeding.Here we describe genetic and physiological traits of WRR that can be beneficial in preventing major rice diseases.Rice blast,caused by the hemibiotrophic fungal pathogen Magnaporthe oryzae,and sheath blight disease,caused by the necrotrophic pathogen Rhizoctonia solani,are the two most damaging biotic stresses of rice.Many major and minor resistance genes and QTL have been identified in cultivated and wild rice relatives.However,novel QTL were recently found in the two major U.S.biotypes of WRR,blackhull-awned(BH)and strawhullawnless(SH),suggesting that WRR has evolved novel genetic mechanisms to cope with these biotic stresses.Twenty-eight accessions of WRR(PI 653412–PI 653439)from the southern USA were characterized and placed in the National Small Grains Collection,and are available for identification of novel genetic factors to prevent biotic stress.
基金National Scientific Technology Key Project (2004BA907A27)Postdoctoral Fund Project of Heilongjiang Province
文摘A long-red awn weedy rice and rice cultivars named Ken99004(ZCI), Crossing-503(ZC2), Ken Sticky Rice(ZC3), Shashani(ZC4), Long-Grain Aromatic Rice(ZC5) were used to study typical wild traits of weedy rice and to identify the cold resistance of all genotypes. The results showed that the stem of long-red awn weedy rice was the weakest. No difference was found in the early stage of rice growth, e.g. the vegetable growth stage, between long-red awn weedy rice and other rice cultivars in the stem rigidity, but in the later stage, or reproductive growth stage, their leaves and stems were senescent rapidly because of the speedy supply of nutrients for panicle growth, meanwhile the rigidity of stem was reduced sharply just as withered weeds. The germination rate of long- red awn weedy rice was the highest in cold condition, and in turn were ZCI, ZC2, ZC3, ZC4, ZC5, respectively. The performances of genotypes in cold tolerance were identical, those with a high ability of germination in low temperature also showed a strong cold tolerance in main traits in whole growth period, the order from strong to weak in the extent of cold tolerance were long-red awn weedy rice, ZCl, ZC2, ZC3, ZC4, ZC5, respectively
文摘Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of cultivated rice. To test this assumption, red rice and cultivated rice were grown in nutrient solution to compare their growth and physiological responses to N supply. Experimental design was a split-plot, where main plot factor was rice type (Stf-3, ‘Wells’);split-plot factor was N treatment [T1 (complete nutrient solution);T2 (–NH4NO3);T3 (+NH4NO3 for 24-h post-N deficiency);and T4 (+NH4NO3 for 48-h post-N deficiency)]. Nitrogen deficiency was defined as N sufficiency index (NSI) 4, Stf-3 showed higher increment in root length and surface area than Wells. Shoot tissue concentrations of N and total sugars were measured to determine physiological response in N-deficient and N-supplemented plants. Stf-3 had greater N and sucrose tissue concentrations at N-deficient conditions compared with Wells, implying a stress-adaptive molecular mechanism regulated by N and sucrose availability.
基金financially supported by the National Basic Research and Development Program of China (Grant No. 2007CB109202)the China Transgenic Organism Research and Commercialization Project (Grant Nos. 2008ZX08011 and 2009ZX08012-020B)+4 种基金the Natural National Science Foundation of China (Grant No. 30800604)the Jiangsu Postdoctoral Foundation (Grant No. 0701040B)the National College Students’ Innovative Undertaking Plan of China (Grant No. 111030702)Jiangsu Science and Technology Support Project (Grant No. BE2011353)Special Fund for Agro-Scientific Research in the Public Interest of China (Grant No. 201303022)
文摘Weedy rice (Oryza sativa f. spontanea), the predominant type of which has a red pericarp, seriously inhibits growth and yield of direct-seeded rice in Jiangsu Province, China. In this study, we randomly selected 10 weedy rice accessions from 10 plots in Jiangsu, and then sequenced the full lengths of their Rc genes (approximately 6.4 kb). In addition, we collected 166 different full-length Rc genes in the Oryza genus from the literature and from GenBank. A collinearity sequence analysis showed that the 10 weedy rice accessions from Jiangsu all had the same wild-type allele of the Rc gene. Single nucleotide polymorphisms indicated that the nucleotide polymorphisms (π= 0.19) and the proportion of segregation sites (ew = 0.28) of the Rc genes in the 10 weedy rice accessions from Jiangsu were higher than those in 56 weedy rice accessions from USA (π = 0.09 and θw = 0.07). Haplotype and phylogenetic analyses showed that the Rc genes of weedy rice accessions from Jiangsu were not revertants of the rc gene found in Asian cultivated rice (O. sativa) varieties with white pericarp. In addition, Rc gene sequences of the rice varieties Lvdao from Lianyungang, Jiangsu and Tangdao from Anhui were more similar to those of cultivated rice than to the weedy rice from Jiangsu. These findings support the continued quarantine of weedy rice and clarify the evolutionary mechanism of the red pericarp found in the weedy rice of Jiangsu.
文摘A study was undertaken in February 2012 to understand the knowledge and practices of rice farmers about weedy rice in two municipalities of Iloilo, Philippines. The specific objectives of the study were to establish what rice farmers know about weedy rice, examine rice farmers’ practices in managing weedy rice, and recommend policies on weedy rice management based on the results of the study. Farmers’ knowledge of weedy rice did not differ much between two villages. Results showed that 41% from the second most affected village and 33% from the most affected village thought that weedy rice cannot reduce the market value of the harvested rice. Majority of the farmers (68%) responded that awns can be absent in some weedy rice and about 40% of the farmers did not know that seeds of weedy rice have dormancy. Cutting the weedy rice panicles at harvest, as the best way of reducing weedy rice, was practiced by majority of the respondents (82%) from the most affected village. Our study suggests that there is a need to increase awareness about weedy rice among Asian farmers.
基金supported by the National Nature Science Foundation of China,the National Key Research and Development Program of China(302001109,2016YFD0300508,2017YFD0301602,2018YFD0301105)the Fujian and Taiwan Cultivation Resources Development and Green Cultivation Coordination Innovation Center,China(Fujian 2011 Project,2015-75)the Natural Science Foundation of Fujian Province,China(2022J01142)。
文摘Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金This research was supported by the National Natural Science Foundation of China(32061143034,32161143028)Tibet Regional Science and Technology Collaborative Innovation Project(QYXTZX-NQ2021-01)Fundamental Research Funds for the Central Universities(lzujbky-2022-ct04).
文摘Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs.
基金financially supported by the National Natural Science Foundation of China (42207032,52070064)the Key Project of National Natural Science Foundation of China (42330705)+2 种基金Key R&D Project of Hebei Province (21373601D)Advanced Talents Incubation Program of the Hebei University (521100222012)economic support from Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development and Institute of Life Sciences and Green Development of Hebei University。
文摘Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.