For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equati...In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.展开更多
Extended mapping approach is introduced to solve (2+1)-dimensional Nizhnik-Novikov Veselov equation. A new type of variable separation solutions is derived with arbitrary functions in the model. Based on this excit...Extended mapping approach is introduced to solve (2+1)-dimensional Nizhnik-Novikov Veselov equation. A new type of variable separation solutions is derived with arbitrary functions in the model. Based on this excitation, rich localized structures such as multi-lump soliton and ring soliton are revealed by selecting the arbitrary function appropriately.展开更多
Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic so...Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.展开更多
In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the...In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.展开更多
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl...Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).展开更多
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c...By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé and some exact solutions are discussed. The B?cklund transformation and bilinear equations are obtained through Painl...A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé and some exact solutions are discussed. The B?cklund transformation and bilinear equations are obtained through Painlevé analysis. Some exact solutions are deduced by Hirota method and generalized Wronskian method.展开更多
N-soliton solutions and the bilinear form of the (2 + 1)-dimensional AKNS equation are obtained by using the Hirota method. Moreover, the double Wronskian solution and generalized double Wronskian solution are constru...N-soliton solutions and the bilinear form of the (2 + 1)-dimensional AKNS equation are obtained by using the Hirota method. Moreover, the double Wronskian solution and generalized double Wronskian solution are constructed through the Wronskian technique. Furthermore, rational solutions, Matveev solutions and complexitons of the (2 + 1)-dimensional AKNS equation are given through a matrix method for constructing double Wronskian entries. The three solutions are new.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the co...In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.展开更多
We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)eq...We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.展开更多
The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, re...The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.展开更多
In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step proce...In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.展开更多
This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensiona...This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear equation, through the trilinear-linear equation, we can obtain the explicit representation of exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact solutions by presenting their three-dimensional plots and the corresponding density plots.展开更多
In this paper, based on Hirota bilinear form, we aim to show the diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equation. By introducing an arbitrary differentiable function in assump...In this paper, based on Hirota bilinear form, we aim to show the diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equation. By introducing an arbitrary differentiable function in assumption form, we can obtain abundant interaction solutions which can provide the possibility for exploring the interactions between lump waves and other kinds of waves. By choosing some particular functions and values of the involved parameters, we give four illustrative examples of the resulting solutions, and explore some novel interaction behaviors in (2 + 1)-dimensional SK equation.展开更多
In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method...In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.展开更多
The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we invest...The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we investigate the periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation by virtue of the Hirota bilinear form. Several novel analytic solutions for such a model are obtained and verified with the help of symbolic computation.展开更多
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000 .
文摘In this paper, we extend the multiple Riccati equations rational expansion method by introducing a new ansatz. Using this method, many complexiton solutions of the (2+ 1 )-dimensional Nizhnik-Novikov-Veselov equations are obtained which include various combination of hyperbolic and trigonometric periodic function solutions, various combination of hyperbolic and rational function solutions, various combination of trigonometric periodic and rational function solutions, etc. The method can be also used to solve other nonlinear partial differential equations.
基金The authors would like to thank Profs. Jie-Fang Zhang and Chun-Long Zheng for helpful discussions.
文摘Extended mapping approach is introduced to solve (2+1)-dimensional Nizhnik-Novikov Veselov equation. A new type of variable separation solutions is derived with arbitrary functions in the model. Based on this excitation, rich localized structures such as multi-lump soliton and ring soliton are revealed by selecting the arbitrary function appropriately.
文摘Based on the travelling wave method, a(2 + 1)-dimensional AKNS equation is considered. Elliptic solution and soliton solution are presented and it is shown that the soliton solution can be reduced from the elliptic solution. It also proves that the result is consistent with the soliton solution of simplify Hirota bilinear method by Wazwaz and illustrate the solution are right travelling wave solution.
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)the Fund from Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things(Grant No.ZF1213)
文摘In this paper,the truncated Painlev′e analysis,nonlocal symmetry,Bcklund transformation of the(2+1)-dimensional modified Bogoyavlenskii–Schiff equation are presented.Then the nonlocal symmetry is localized to the corresponding nonlocal group by the prolonged system.In addition,the(2+1)-dimensional modified Bogoyavlenskii–Schiff is proved consistent Riccati expansion(CRE) solvable.As a result,the soliton–cnoidal wave interaction solutions of the equation are explicitly given,which are difficult to find by other traditional methods.Moreover figures are given out to show the properties of the explicit analytic interaction solutions.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647112)the Foundation of Donghua University
文摘Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).
文摘By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
基金supported by Chinese National Social Science Foundation(Grant Number:CNSSF:13CJY037)Research on the indemnificatory Apartment Construction Based on Residential Integration.
文摘A (2 + 1) dimensional KdV-mKdV equation is proposed and integrability in the sense of Painlevé and some exact solutions are discussed. The B?cklund transformation and bilinear equations are obtained through Painlevé analysis. Some exact solutions are deduced by Hirota method and generalized Wronskian method.
文摘N-soliton solutions and the bilinear form of the (2 + 1)-dimensional AKNS equation are obtained by using the Hirota method. Moreover, the double Wronskian solution and generalized double Wronskian solution are constructed through the Wronskian technique. Furthermore, rational solutions, Matveev solutions and complexitons of the (2 + 1)-dimensional AKNS equation are given through a matrix method for constructing double Wronskian entries. The three solutions are new.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
文摘In this paper, the new mapping approach and the new extended auxiliary equation approach were used to investigate the exact traveling wave solutions of (2 + 1)-dimensional time-fractional Zoomeron equation with the conformable fractional derivative. As a result, the singular soliton solutions, kink and anti-kink soliton solutions, periodic function soliton solutions, Jacobi elliptic function solutions and hyperbolic function solutions of (2 + 1)-dimensional time-fractional Zoomeron equation were obtained. Finally, the 3D and 2D graphs of some solutions were drawn by setting the suitable values of parameters with Maple, and analyze the dynamic behaviors of the solutions.
文摘We present new lemmas,theorem and corollaries to construct interactions among higher-order rogue waves,n-periodic waves and n-solitons solutions(n→∞)to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)equation.Several examples for theories are given by choosing definite interactions of the wave solutions for the model.In particular,we exhibit dynamical interactions between a rogue and a cross bright-dark bell wave,a rogue and a cross-bright bell wave,a rogue and a one-,two-,three-,four-periodic wave.In addition,we also present multi-types interactions between a rogue and a periodic cross-bright bell wave,a rogue and a periodic cross-bright-bark bell wave.Finally,we physically explain such interaction solutions of the model in the 3D and density plots.
基金supported by the National Natural Science Foundation of China(11202161 and 11172233)the Basic Research Fund of the Northwestern Polytechnical University(GBKY1034)
文摘The (2+1)-dimensional BKP equation in the Hirota bilinear form is studied during this work. Wronskian and Grammian techniques are applied to the construction of Wronskian and Grammian solutions of this equation, respectively. It is shown that these solutions can be expressed as not only Pfaffians but also Wronskians and Grammians.
基金Project supported by the National Natural Science Foundation of China(Grant No.11505094)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150984)
文摘In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.
文摘This paper constructs exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation with the help of symbolic computation. By means of the truncated Painlev expansion, the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear equation, through the trilinear-linear equation, we can obtain the explicit representation of exact solutions for the (2 + 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. We have depicted the profiles of the exact solutions by presenting their three-dimensional plots and the corresponding density plots.
文摘In this paper, based on Hirota bilinear form, we aim to show the diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equation. By introducing an arbitrary differentiable function in assumption form, we can obtain abundant interaction solutions which can provide the possibility for exploring the interactions between lump waves and other kinds of waves. By choosing some particular functions and values of the involved parameters, we give four illustrative examples of the resulting solutions, and explore some novel interaction behaviors in (2 + 1)-dimensional SK equation.
基金Partially supported by the National Key Basic Research Project of China under the Grant(2004CB318000).
文摘In this paper, a new generalized compound Riccati equations rational expansion method (GCRERE) is proposed. Compared with most existing rational expansion methods and other sophisticated methods, the proposed method is not only recover some known solutions, but also find some new and general complexiton solutions. Being concise and straightforward, it is applied to the (2+1)-dimensional Burgers equation. As a result, eight families of new exact analytical solutions for this equation are found. The method can also be applied to other nonlinear partial differential equations.
文摘The (2 + 1)-dimensional fifth-order KdV equation is an important higher-dimensional and higher-order extension of the famous KdV equation in fluid dynamics. In this paper, by constructing new test functions, we investigate the periodic solitary wave solutions for the (2 + 1)-dimensional fifth-order KdV equation by virtue of the Hirota bilinear form. Several novel analytic solutions for such a model are obtained and verified with the help of symbolic computation.