Nanosized Gd2(1–x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties we...Nanosized Gd2(1–x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties were investigated as functions of the Eu3+ doping concentration and annealing temperature.The results indicated that the as-prepared samples showed a strong emission of Eu3+ under the irradiation of 303 nm.For Eu3+-doped Gd2Ti2O7,the orange emission at 586 nm was the strongest,which was correspond...展开更多
Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectrosc...Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the samples. The effects of the initial solution pH value and urea content on the structure of the sample were studied. The XRD results show that pure phase Gd3Ga5O12 can be obtained at pH =6 and pH =8 of the initial solution. The average crystallite size can be calculated as in the range of 24~33 nm. The average crystallite size decreases with increasing molar ratio of urea to metal ion. The results of excitation spectra and emission spectra show that the emission peaks are ascribed to 5D0→7FJ transitions of Eu3+, and the magnetic dipole transition originated from 5D0 →7F1 of Eu3+ is the strongest; the broad excitation bands belong to change transfer band of Eu?O and the host absorption of Gd3Ga5O12. An efficient energy transfer occurs from Gd3+ to Eu3+.展开更多
Nanocrystalline monoclinic and cubic Gd 2O 3∶Eu with different Eu 3+ concentration were prepared using glycine-nitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, p...Nanocrystalline monoclinic and cubic Gd 2O 3∶Eu with different Eu 3+ concentration were prepared using glycine-nitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, pure monoclinic and cubic Gd 2O 3∶Eu with particle size less than 40 nm can be easily formed. Under ultraviolet excitation, main emission of Eu 3+ ( 5D 0→ 7F 2) locates at 624 nm in monoclinic Gd 2O 3∶Eu and 611 nm in cubic sample. In excitation spectrum two broad bands corresponding to the host absorption and charge transfer state (CTS) and f-f transitions of Gd 3+ and Eu 3+ were observed and discussed. The quenching concentration of monoclinic and cubic Gd 2O 3∶Eu is 10% and 15%, respectively, both of which are much higher than that of bulk Gd 2O 3∶Eu.展开更多
基金supported by Cultivating Innovative Talents for Colleges & Universities of Henan Province (2002006)Open Research Foundation of Henan University
文摘Nanosized Gd2(1–x)Eu2xTi2O7:yV5+ phosphors were prepared via sol-gel method and characterized with X-ray diffraction,Raman spectroscopy,diffuse reflectance spectra and photoluminescence spectra.Their PL properties were investigated as functions of the Eu3+ doping concentration and annealing temperature.The results indicated that the as-prepared samples showed a strong emission of Eu3+ under the irradiation of 303 nm.For Eu3+-doped Gd2Ti2O7,the orange emission at 586 nm was the strongest,which was correspond...
基金financially supported by the Science and Technology Research Project of Department of Education of Liaoning Province,China(No.L2011063)
文摘Nanocrystalline Gd3Ga5O12:Eu3+ with cubic phase was prepared by a urea homogeneous precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric and differential thermal analysis (TG-DTA) and photoluminescence spectra were used to characterize the samples. The effects of the initial solution pH value and urea content on the structure of the sample were studied. The XRD results show that pure phase Gd3Ga5O12 can be obtained at pH =6 and pH =8 of the initial solution. The average crystallite size can be calculated as in the range of 24~33 nm. The average crystallite size decreases with increasing molar ratio of urea to metal ion. The results of excitation spectra and emission spectra show that the emission peaks are ascribed to 5D0→7FJ transitions of Eu3+, and the magnetic dipole transition originated from 5D0 →7F1 of Eu3+ is the strongest; the broad excitation bands belong to change transfer band of Eu?O and the host absorption of Gd3Ga5O12. An efficient energy transfer occurs from Gd3+ to Eu3+.
文摘Nanocrystalline monoclinic and cubic Gd 2O 3∶Eu with different Eu 3+ concentration were prepared using glycine-nitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, pure monoclinic and cubic Gd 2O 3∶Eu with particle size less than 40 nm can be easily formed. Under ultraviolet excitation, main emission of Eu 3+ ( 5D 0→ 7F 2) locates at 624 nm in monoclinic Gd 2O 3∶Eu and 611 nm in cubic sample. In excitation spectrum two broad bands corresponding to the host absorption and charge transfer state (CTS) and f-f transitions of Gd 3+ and Eu 3+ were observed and discussed. The quenching concentration of monoclinic and cubic Gd 2O 3∶Eu is 10% and 15%, respectively, both of which are much higher than that of bulk Gd 2O 3∶Eu.