The purpose of this paper is to further study the(∈,∈∨q_k)-fuzzy filter theory in R_0-algebras. Some new properties of(∈, ∈∨ q_k)-fuzzy filters are given. Representation theorem of(∈,∈∨q_k)-fuzzy filter which...The purpose of this paper is to further study the(∈,∈∨q_k)-fuzzy filter theory in R_0-algebras. Some new properties of(∈, ∈∨ q_k)-fuzzy filters are given. Representation theorem of(∈,∈∨q_k)-fuzzy filter which is generated by a fuzzy set is established. It is proved that the set consisting of all(∈, ∈∨q_k)-fuzzy filters on a given R_0-algebra, under the partial order, forms a complete distributive lattice.展开更多
In this paper, as a generalization of the notion of(∈, ∈∨ q)-fuzzy ideals, we introduced the notion of(∈, ∈∨ qδ)-fuzzy ideals and investigated their properties in BCKalgebras. Several equivalent characterizatio...In this paper, as a generalization of the notion of(∈, ∈∨ q)-fuzzy ideals, we introduced the notion of(∈, ∈∨ qδ)-fuzzy ideals and investigated their properties in BCKalgebras. Several equivalent characterizations of(∈, ∈∨ qδ)-fuzzy ideals are obtained and relations between(∈, ∈∨ qδ)-fuzzy ideals and ideals are discussed in BCK-algebras.展开更多
In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and othe...In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the...In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.展开更多
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byu...An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.展开更多
We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive t...We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive the Hamiltonians of the two models based on the Y(sl(2) ) and the generalized Pauli equation. The energy spectra of the systems are also given in terms of Yangian algebra and quantum mechanics.展开更多
Exact solutions of the eigenvalue problem of two coupled harmonic oscillators related to the Sp(4, R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determi...Exact solutions of the eigenvalue problem of two coupled harmonic oscillators related to the Sp(4, R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determined by one-boson excitation energies built on a vector coherent state of Sp(4, R) U(2).展开更多
Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra Al are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few exp...Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra Al are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
基金Supported by Higher School Research Foundation of Inner Mongolia(NJSY14283)
文摘The purpose of this paper is to further study the(∈,∈∨q_k)-fuzzy filter theory in R_0-algebras. Some new properties of(∈, ∈∨ q_k)-fuzzy filters are given. Representation theorem of(∈,∈∨q_k)-fuzzy filter which is generated by a fuzzy set is established. It is proved that the set consisting of all(∈, ∈∨q_k)-fuzzy filters on a given R_0-algebra, under the partial order, forms a complete distributive lattice.
基金Supported by the National Science Foundation of China(60774073)
文摘In this paper, as a generalization of the notion of(∈, ∈∨ q)-fuzzy ideals, we introduced the notion of(∈, ∈∨ qδ)-fuzzy ideals and investigated their properties in BCKalgebras. Several equivalent characterizations of(∈, ∈∨ qδ)-fuzzy ideals are obtained and relations between(∈, ∈∨ qδ)-fuzzy ideals and ideals are discussed in BCK-algebras.
基金The project supported by National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province of China, and the Natural Science Foundation of Liaocheng University .
文摘In this paper, we present a new rational algebraic approach to uniformly construct a series of exact analytical solutions for nonlinear partial differential equations. Compared with most existing tanh methods and other sophisticated methods, the proposed method not only recovers some known solutions, but also finds some new and general solutions. The solutions obtained in this paper include rational form triangular periodic wave solutions, solitary wave solutions, and elliptic doubly periodic wave solutions. The efficiency of the method can be demonstrated on (2+1)-dimensional dispersive long-wave equation.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
文摘An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
文摘We present the extended hydrogen atom and monopole-hydrogen atom theory through generalizing the usual hydrogen atom model and with a monopole model respectively, in which Y (sl(2) ) algebras are realized. We derive the Hamiltonians of the two models based on the Y(sl(2) ) and the generalized Pauli equation. The energy spectra of the systems are also given in terms of Yangian algebra and quantum mechanics.
基金Key Track Follow-Up Service Foundation of the State Education Commission of China,Science Foundation of the Liaoning Education Commission of China
文摘Exact solutions of the eigenvalue problem of two coupled harmonic oscillators related to the Sp(4, R) Lie algebra are derived by using an algebraic method. It is found that the energy spectrum of the system is determined by one-boson excitation energies built on a vector coherent state of Sp(4, R) U(2).
基金The project supported by National Natural Science Foundation of China under Grant No. 10471139 and Hong Kong Research Grant Council under Grant No. HKBU RGC 2016/05p
文摘Starting from the subgroups of the group U(n), the corresponding Lie algebras of the Lie algebra Al are presented, from which two well-known simple equivalent matrix Lie algebras are given. It follows that a few expanding Lie algebras are obtained by enlarging matrices. Some of them can be devoted to producing double integrable couplings of the soliton hierarchies of nonlinear evolution equations. Others can be used to generate integrable couplings involving more potential functions. The above Lie algebras are classified into two types. Only one type can generate the integrable couplings, whose Hamiltonian structure could be obtained by use of the quadratic-form identity. In addition, one condition on searching for integrable couplings is improved such that more useful Lie algebras are enlightened to engender. Then two explicit examples are shown to illustrate the applications of the Lie algebras. Finally, with the help of closed cycling operation relations, another way of producing higher-dimensional Lie algebras is given.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .