We discuss freezing of quantum imaginarity based onℓ_(1)-norm.Several properties about a quantity of imaginarity based onℓ_(1)-norm are revealed.For a qubit(2-dimensional)system,we characterize the structure of real q...We discuss freezing of quantum imaginarity based onℓ_(1)-norm.Several properties about a quantity of imaginarity based onℓ_(1)-norm are revealed.For a qubit(2-dimensional)system,we characterize the structure of real quantum operations that allow for freezing the quantity of imaginarity of any state.Furthermore,we characterize the structure of local real operations which can freeze the quantity of imaginarity of a class of N-qubit quantum states.展开更多
With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direc...With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.展开更多
The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor late...The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.展开更多
Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault ...Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.展开更多
In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory...In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.展开更多
To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm co...To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.展开更多
Texture smoothing is a fundamental tool in various applications. In this work, a new image texture smoothing method is proposed by defining a novel objective function, which is optimized by L0-norm minimization and a ...Texture smoothing is a fundamental tool in various applications. In this work, a new image texture smoothing method is proposed by defining a novel objective function, which is optimized by L0-norm minimization and a modified relative total variation measure. In addition, the gradient constraint is adopted in objective function to eliminate the staircase effect, which can preserve the structure edges of small gradients. The experimental results show that compared with the state-of-the-art methods, especially the L0 gradient minimization method and the relative total variation method, the proposed method achieves better results in image texture smoothing and significant structure preserving.展开更多
Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground refl...Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.展开更多
We shall introduce 1-type Lipschitz multifunctions from R into generalized 2-normed spaces, and give some results about their 1-type Lipschitz selections.
The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space....The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.展开更多
The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-norm...The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-normed spaces to be statistically Cauchy sequence in 2-normed spaces.展开更多
In this paper, we give four general results on linear extension of isometries between the unit spheres in β-normed spaces. These results improve the corresponding theorems in β-normed spaces.
We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isome...We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.展开更多
Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sens...Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.展开更多
In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency est...In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance.展开更多
In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14...In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.展开更多
For addressing impulse noise in images, this paper proposes a denoising algorithm for non-convex impulse noise images based on the l_(0) norm fidelity term. Since the total variation of the l_(0) norm has a better den...For addressing impulse noise in images, this paper proposes a denoising algorithm for non-convex impulse noise images based on the l_(0) norm fidelity term. Since the total variation of the l_(0) norm has a better denoising effect on the pulse noise, it is chosen as the model fidelity term, and the overlapping group sparse term combined with non-convex higher term is used as the regularization term of the model to protect the image edge texture and suppress the staircase effect. At the same time, the alternating direction method of multipliers, the majorization–minimization method and the mathematical program with equilibrium constraints were used to solve the model. Experimental results show that the proposed model can effectively suppress the staircase effect in smooth regions, protect the image edge details, and perform better in terms of the peak signal-to-noise ratio and the structural similarity index measure.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12271325)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JM-294).
文摘We discuss freezing of quantum imaginarity based onℓ_(1)-norm.Several properties about a quantity of imaginarity based onℓ_(1)-norm are revealed.For a qubit(2-dimensional)system,we characterize the structure of real quantum operations that allow for freezing the quantity of imaginarity of any state.Furthermore,we characterize the structure of local real operations which can freeze the quantity of imaginarity of a class of N-qubit quantum states.
基金supported by the National Basic Research Program of China。
文摘With the extensive application of large-scale array antennas,the increasing number of array elements leads to the increasing dimension of received signals,making it difficult to meet the real-time requirement of direction of arrival(DOA)estimation due to the computational complexity of algorithms.Traditional subspace algorithms require estimation of the covariance matrix,which has high computational complexity and is prone to producing spurious peaks.In order to reduce the computational complexity of DOA estimation algorithms and improve their estimation accuracy under large array elements,this paper proposes a DOA estimation method based on Krylov subspace and weighted l_(1)-norm.The method uses the multistage Wiener filter(MSWF)iteration to solve the basis of the Krylov subspace as an estimate of the signal subspace,further uses the measurement matrix to reduce the dimensionality of the signal subspace observation,constructs a weighted matrix,and combines the sparse reconstruction to establish a convex optimization function based on the residual sum of squares and weighted l_(1)-norm to solve the target DOA.Simulation results show that the proposed method has high resolution under large array conditions,effectively suppresses spurious peaks,reduces computational complexity,and has good robustness for low signal to noise ratio(SNR)environment.
基金This work is sponsored by National Natural Science Foundation of China (No. 40874056), Important National Science & Technology Specific Projects 2008ZX05023-005-004, and the NCET Fund.Acknowledgements The authors are grateful to Liu Yang, and Zhu Sheng-wang for their constructive remarks on this manuscript.
文摘The Lt-norm method is one of the widely used matching filters for adaptive multiple subtraction. When the primaries and multiples are mixed together, the L1-norm method might damage the primaries, leading to poor lateral continuity. In this paper, we propose a constrained L1-norm method for adaptive multiple subtraction by introducing the lateral continuity constraint for the estimated primaries. We measure the lateral continuity using prediction-error filters (PEF). We illustrate our method with the synthetic Pluto dataset. The results show that the constrained L1-norm method can simultaneously attenuate the multiples and preserve the primaries.
基金Supported by Doctoral Special Fund of State Education Commissionthe National Natural Science Foundation of China,Grant No.59477001 and No.59707002
文摘Based on exact penalty function, a new neural network for solving the L1-norm optimization problem is proposed. In comparison with Kennedy and Chua’s network(1988), it has better properties.Based on Bandler’s fault location method(1982), a new nonlinearly constrained L1-norm problem is developed. It can be solved with less computing time through only one optimization processing. The proposed neural network can be used to solve the analog diagnosis L1 problem. The validity of the proposed neural networks and the fault location L1 method are illustrated by extensive computer simulations.
文摘In the medical computer tomography (CT) field, total variation (TV), which is the l1-norm of the discrete gradient transform (DGT), is widely used as regularization based on the compressive sensing (CS) theory. To overcome the TV model's disadvantageous tendency of uniformly penalizing the image gradient and over smoothing the low-contrast structures, an iterative algorithm based on the l0-norm optimization of the DGT is proposed. In order to rise to the challenges introduced by the l0-norm DGT, the algorithm uses a pseudo-inverse transform of DGT and adapts an iterative hard thresholding (IHT) algorithm, whose convergence and effective efficiency have been theoretically proven. The simulation demonstrates our conclusions and indicates that the algorithm proposed in this paper can obviously improve the reconstruction quality.
基金supported by the National Natural Science Foundation of China (Grant No. 61471138, 50909029 and 61531012)Program of International S\&T Cooperation (Grant No. 2013DFR20050)+1 种基金the Defense Industrial Technology Development Program (Grant No. B2420132004)the Acoustic Science and Technology Laboratory (2014)
文摘To improve the identification capability of AP algorithm in time-varying sparse system, we propose a block parallel l_0-SWL-DCD-AP algorithm in this paper. In the proposed algorithm, we first introduce the l_0-norm constraint to promote its application for sparse system. Second, we use the shrinkage denoising method to improve its track ability. Third, we adopt the widely linear processing to take advantage of the non-circular properties of communication signals. Last, to reduce the high computational complexity and make it easy to implemented, we utilize the dichotomous coordinate descent(DCD) iterations and the parallel processing to deal with the tapweight update in the proposed algorithm. To verify the convergence condition of the proposed algorithm, we also analyze its steadystate behavior. Several simulation are done and results show that the proposed algorithm can achieve a faster convergence speed and a lower steady-state misalignment than similar APA-type algorithm. When apply the proposed algorithm in the decision feedback equalizer(DFE), the bite error rate(BER) decreases obviously.
基金Supported by the National Natural Science Foundation of China Youth Fund(No.61807029)Natural Science Foundation of Hebei Province(No.F2019203427).
文摘Texture smoothing is a fundamental tool in various applications. In this work, a new image texture smoothing method is proposed by defining a novel objective function, which is optimized by L0-norm minimization and a modified relative total variation measure. In addition, the gradient constraint is adopted in objective function to eliminate the staircase effect, which can preserve the structure edges of small gradients. The experimental results show that compared with the state-of-the-art methods, especially the L0 gradient minimization method and the relative total variation method, the proposed method achieves better results in image texture smoothing and significant structure preserving.
基金supported by the National Natural Science Foundation of China(No.41422403)
文摘Least-squares migration (LSM) is applied to image subsurface structures and lithology by minimizing the objective function of the observed seismic and reverse-time migration residual data of various underground reflectivity models. LSM reduces the migration artifacts, enhances the spatial resolution of the migrated images, and yields a more accurate subsurface reflectivity distribution than that of standard migration. The introduction of regularization constraints effectively improves the stability of the least-squares offset. The commonly used regularization terms are based on the L2-norm, which smooths the migration results, e.g., by smearing the reflectivities, while providing stability. However, in exploration geophysics, reflection structures based on velocity and density are generally observed to be discontinuous in depth, illustrating sparse reflectance. To obtain a sparse migration profile, we propose the super-resolution least-squares Kirchhoff prestack depth migration by solving the L0-norm-constrained optimization problem. Additionally, we introduce a two-stage iterative soft and hard thresholding algorithm to retrieve the super-resolution reflectivity distribution. Further, the proposed algorithm is applied to complex synthetic data. Furthermore, the sensitivity of the proposed algorithm to noise and the dominant frequency of the source wavelet was evaluated. Finally, we conclude that the proposed method improves the spatial resolution and achieves impulse-like reflectivity distribution and can be applied to structural interpretations and complex subsurface imaging.
文摘We shall introduce 1-type Lipschitz multifunctions from R into generalized 2-normed spaces, and give some results about their 1-type Lipschitz selections.
文摘The purpose of this paper is to introduce and study some sequence spaces which are defined by combining the concepts of sequences of Musielak-Orlicz functions, invariant means and lacunary convergence on 2-norm space. We establish some inclusion relations between these spaces under some conditions.
文摘The concept of statistical convergence was introduced by Stinhauss [1] in 1951. In this paper, we study con- vergence of double sequence spaces in 2-normed spaces and obtained a criteria for double sequences in 2-normed spaces to be statistically Cauchy sequence in 2-normed spaces.
文摘In this paper, we give four general results on linear extension of isometries between the unit spheres in β-normed spaces. These results improve the corresponding theorems in β-normed spaces.
文摘We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.
文摘Radial functions have become a useful tool in numerical mathematics. On the sphere they have to be identified with the zonal functions. We investigate zonal polynomials with mass concentration at the pole, in the sense of their L1-norm is attaining the minimum value. Such polynomials satisfy a complicated system of nonlinear e-quations (algebraic if the space dimension is odd, only) and also a singular differential equation of third order. The exact order of decay of the minimum value with respect to the polynomial degree is determined. By our results we can prove that some nodal systems on the sphere, which are defined by a minimum-property, are providing fundamental matrices which are diagonal-dominant or bounded with respect to the ∞-norm, at least, as the polynomial degree tends to infinity.
文摘In this work,we address the frequency estimation problem of a complex single-tone embedded in the heavy-tailed noise.With the use of the linear prediction(LP)property and l_(1)-norm minimization,a robust frequency estimator is developed.Since the proposed method employs the weighted l_(1)-norm on the LP errors,it can be regarded as an extension of the l_(1)-generalized weighted linear predictor.Computer simulations are conducted in the environment of α-stable noise,indicating the superiority of the proposed algorithm,in terms of its robust to outliers and nearly optimal estimation performance.
文摘In this paper, we introduce the following quattuordecic functional equation f(x+7y)-14f(x+6y)+91f(x+5y)-364f(x+4y)+1001f(x+3y)-2002f(x+2y)+3003f(x+y)-3432f(x)+3003f(x-y)-2002f(x-2y)+1001f(x-3y)-364f(x-4y)+91f(x-5y)-14f(x-6y)+f(x-7y)=14!f(y), investigate the general solution and prove the stability of this quattuordecic functional equation in quasi β-normed spaces by using the fixed point method.
基金funded by National Nature Science Foundation of China,grant number 61302188。
文摘For addressing impulse noise in images, this paper proposes a denoising algorithm for non-convex impulse noise images based on the l_(0) norm fidelity term. Since the total variation of the l_(0) norm has a better denoising effect on the pulse noise, it is chosen as the model fidelity term, and the overlapping group sparse term combined with non-convex higher term is used as the regularization term of the model to protect the image edge texture and suppress the staircase effect. At the same time, the alternating direction method of multipliers, the majorization–minimization method and the mathematical program with equilibrium constraints were used to solve the model. Experimental results show that the proposed model can effectively suppress the staircase effect in smooth regions, protect the image edge details, and perform better in terms of the peak signal-to-noise ratio and the structural similarity index measure.