In this paper, tin disulfide (SnS2), a two-dimensional (2D) n-type direct bandgap layered metal dichalcogenide with a gap value of 2.24 eV, was employed as a saturable absorber. Its appearance and nonlinear satura...In this paper, tin disulfide (SnS2), a two-dimensional (2D) n-type direct bandgap layered metal dichalcogenide with a gap value of 2.24 eV, was employed as a saturable absorber. Its appearance and nonlinear saturable ab- sorption characteristics were also investigated experimentally. SnSz-PVA (polyvinyl alcohol) film was successfully prepared and employed as a mode-locker for achieving a mode-locked Er-doped fiber laser with a pulse width of 623 fs at a pulse repetition rate of 29.33 MHz. The results prove that SnS2 nanosheets will have wide potential ultrafast photonic applications due to their suitable bandgap value and excellent nonlinear saturable absorption characteristics.展开更多
基金National Natural Science Foundation of China(NSFC)(11474187,61205174,61475089)China Postdoctoral Science Foundation(2016M602177)Natural Science Foundation of Shandong Province,China(ZR2014FM028,ZR2016FP01)
文摘In this paper, tin disulfide (SnS2), a two-dimensional (2D) n-type direct bandgap layered metal dichalcogenide with a gap value of 2.24 eV, was employed as a saturable absorber. Its appearance and nonlinear saturable ab- sorption characteristics were also investigated experimentally. SnSz-PVA (polyvinyl alcohol) film was successfully prepared and employed as a mode-locker for achieving a mode-locked Er-doped fiber laser with a pulse width of 623 fs at a pulse repetition rate of 29.33 MHz. The results prove that SnS2 nanosheets will have wide potential ultrafast photonic applications due to their suitable bandgap value and excellent nonlinear saturable absorption characteristics.