期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Test selection and optimization for PHM based on failure evolution mechanism model 被引量:8
1
作者 Jing Qiu Xiaodong Tan +1 位作者 Guanjun Liu Kehong L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期780-792,共13页
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse... The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level. 展开更多
关键词 test selection and optimization (TSO) prognostics and health management (PHM) failure evolution mechanism model (FEMM) adaptive simulated annealing genetic algorithm (asaga).
下载PDF
基于自适应模拟退火遗传算法的多目标最优潮流 被引量:17
2
作者 乐秀璠 覃振成 尹峰 《继电器》 CSCD 北大核心 2005年第7期10-15,共6页
采用自适应遗传算法来确定基本遗传算法的交叉率和变异率,保证遗传算法的收敛性。同时引入模拟退火法思想,通过拉伸目标函数的适应度使优秀个体在产生后代时具有明显的优势,从而加速寻优的过程,形成一种新的算法:自适应模拟退火遗传算... 采用自适应遗传算法来确定基本遗传算法的交叉率和变异率,保证遗传算法的收敛性。同时引入模拟退火法思想,通过拉伸目标函数的适应度使优秀个体在产生后代时具有明显的优势,从而加速寻优的过程,形成一种新的算法:自适应模拟退火遗传算法。应用该算法进行电力系统多目标最优潮流计算,IEEE30试验系统计算结果表明了该算法的灵活性和有效性。 展开更多
关键词 自适应模拟退火遗传算法 模糊集理论 多目标 最优潮流
下载PDF
考虑主城区货车交通管制的油品配送计划优化 被引量:2
3
作者 赵慧英 钱大琳 张博 《油气储运》 CAS 北大核心 2018年第3期301-309,共9页
基于成品油配送的服务特点和车辆安排的影响因素分析,考虑了主城区货运车辆交通管制政策约束,以最小运输费用和运输风险为目标函数,建立了成品油配送计划多目标优化模型。根据北京某石油公司油品配送实际情况,设计了自适应模拟退火遗传... 基于成品油配送的服务特点和车辆安排的影响因素分析,考虑了主城区货运车辆交通管制政策约束,以最小运输费用和运输风险为目标函数,建立了成品油配送计划多目标优化模型。根据北京某石油公司油品配送实际情况,设计了自适应模拟退火遗传算法进行求解,并且研究了主城区货运车辆交通管制政策这一约束条件的可调整性;同时,针对油品资源配置不合理问题,提出基于不同企业串换配送的优化建议。采用现有条件、约束调整及串换配送3种方案进行实例验证,结果表明:完成同样的配送任务,现有配送条件下最小费用成本和风险成本分别为19 303元、4 976元;调整约束条件后,费用成本和风险成本分别下降了0.07%、9.67%;而开展串换配送后,费用成本和风险成本分别下降了11.87%、38.34%,从而降低了成品油配送成本,为提高危险货物运输安全提供了参考价值。 展开更多
关键词 成品油配送计划 交通管制 车辆安排 运输风险-费用权衡 串换配送 自适应模拟退火遗传算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部