The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near ...The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near Dome A in Antarctica satisfies the conditions for obtaining million-years-old ice since it has low temperatures and low accumulation rates. We analyze the corresponding relation between radar wave features and the crystal orientation fabric (COF) types based on the results of multi-polarization plane radio echo sounding (RES). The results show that, even in the summit of the ice sheet, the COF type is not perfect, but is an elongated single-pole COF. Principal-axis-orientation differences of the COF among the different periods exist and reveal that the ice flow orientations are not constant but deviate clockwise with the increasing depth. This may be related to the adjacent basal valley or both height and position changes of the summit during the glacial-interglacial periods.展开更多
Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollu...Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.展开更多
基金the National Natural Science Foundation of China(Grant No.40874060)the 863 projection(Grant No.2006AA09Z152)
文摘The ice exceeding one million years old has significant meaning for verifying and interpreting the middle Pleistocene transition (MPT) and the relationship between greenhouse gas and climate change. The region near Dome A in Antarctica satisfies the conditions for obtaining million-years-old ice since it has low temperatures and low accumulation rates. We analyze the corresponding relation between radar wave features and the crystal orientation fabric (COF) types based on the results of multi-polarization plane radio echo sounding (RES). The results show that, even in the summit of the ice sheet, the COF type is not perfect, but is an elongated single-pole COF. Principal-axis-orientation differences of the COF among the different periods exist and reveal that the ice flow orientations are not constant but deviate clockwise with the increasing depth. This may be related to the adjacent basal valley or both height and position changes of the summit during the glacial-interglacial periods.
文摘Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.