期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
复变量重构核粒子法与有限元法耦合解弹性力学问题 被引量:1
1
作者 陈丽 李九红 程玉民 《力学季刊》 CSCD 北大核心 2009年第2期191-200,共10页
提出了弹性力学的复变量重构核粒子法与有限元法的耦合法(CVRKPM/FEM)。采用场量耦合试函数法将弹性力学的复变量重构核粒子法与有限元法进行耦合,详细推导了在整个求解域上的耦合公式。最后通过数值算例证实了本文所提弹性力学的复变... 提出了弹性力学的复变量重构核粒子法与有限元法的耦合法(CVRKPM/FEM)。采用场量耦合试函数法将弹性力学的复变量重构核粒子法与有限元法进行耦合,详细推导了在整个求解域上的耦合公式。最后通过数值算例证实了本文所提弹性力学的复变量重构核粒子法与有限元的耦合法的有效性。本文的耦合法不仅可以很方便地施加本质边界条件,而且可以充分利用无网格方法和有限元法的优势,弥补各自不足以提高计算效率。 展开更多
关键词 弹性力学 复变量重构核粒子法 有限元法 cvrkpm/FEM耦合法 耦合试函数
下载PDF
Analysis of variable coefficient advection-diffusion problems via complex variable reproducing kernel particle method
2
作者 翁云杰 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期197-202,共6页
The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape... The complex variable reproducing kernel particle method (CVRKPM) of solving two-dimensional variable coefficient advection-diffusion problems is presented in this paper. The advantage of the CVRKPM is that the shape function of a two-dimensional problem is formed with a one-dimensional basis function. The Galerkin weak form is employed to obtain the discretized system equation, and the penalty method is used to apply the essential boundary conditions. Then the corresponding formulae of the CVRKPM for two-dimensional variable coefficient advection-diffusion problems are obtained. Two numerical examples are given to show that the method in this paper has greater accuracy and computational efficiency than the conventional meshless method such as reproducing the kernel particle method (RKPM) and the element- free Galerkin (EFG) method. 展开更多
关键词 meshless method reproducing kernel particle method (RKPM) complex variable reproducingkernel particle method (cvrkpm) advection-diffusion problem
下载PDF
The complex variable reproducing kernel particle method for elasto-plasticity problems 被引量:5
3
作者 CHEN Li1 & CHENG YuMin2 1 Department of Engineering Mechanics,Chang’an University,Xi’an 710064,China 2 Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第5期954-965,共12页
On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the... On the basis of reproducing kernel particle method(RKPM),using complex variable theory,the complex variable reproducing kernel particle method(CVRKPM) is discussed in this paper.The advantage of the CVRKPM is that the correction function of a two-dimensional problem is formed with one-dimensional basis function when the shape function is formed.Then the CVRKPM is applied to solve two-dimensional elasto-plasticity problems.The Galerkin weak form is employed to obtain the discretized system equation,the penalty method is used to apply the essential boundary conditions.And then,the CVRKPM for two-dimensional elasto-plasticity problems is formed,the corresponding formulae are obtained,and the Newton-Raphson method is used in the numerical implementation.Three numerical examples are given to show that this method in this paper is effective for elasto-plasticity analysis. 展开更多
关键词 MESHLESS METHOD reproducing KERNEL PARTICLE method(RKPM) complex variable reproducing KERNEL PARTICLE method(cvrkpm) CORRECTION function ELASTO-PLASTICITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部