Usually, models of globular star clusters are created by analyzing their luminosity and other observation parameters. The goal of this work is to create stable models of globular clusters based on the laws of mechanic...Usually, models of globular star clusters are created by analyzing their luminosity and other observation parameters. The goal of this work is to create stable models of globular clusters based on the laws of mechanics. It is necessary to set the coordinates, velocities and masses of the stars so that as a result of their gravitational interaction the globular cluster is not destroyed. This is not an easy task, and it has been solved in this paper. Using an exact solution of the axisymmetric gravitational interaction of N-bodies, single-layer spherical structures were created. They are combined into multilayer models of globular clusters. An algorithm and a program for their creation is described. As a result of solving the problem of gravitational interaction of N bodies, evolution of 5-, 10-, and 15-layer structures was studied. During the inter-body interaction, there proceeds a transition from the initial specially organized structure to a structure with bodies, uniformly distributed in space. The number of inter-body collisions decreases, and the globular cluster model passes into the stable form of its existence. The collisions of bodies and the acquisition of rotational motion and thermal energy by them are considered. As a result of the passage to scaled dimensions, the results were recalculated to the conditions of globular star clusters. The periods of rotation and the temperatures of merged stars are calculated. Attention is paid to a decreased central-body mass in the analyzed models of globular star clusters.展开更多
This paper studies the small molybdenum clusters of Mon (n=2 8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structure...This paper studies the small molybdenum clusters of Mon (n=2 8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n = 7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo-N-N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N-N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.展开更多
The stable configurations and hydrogen bond nature of (H2O)n clusters (n = 3-6) have been investigated by the B3LYP method at the 6-31++g^** level. Upon calculation, four conclusions have been drawn: (1) In...The stable configurations and hydrogen bond nature of (H2O)n clusters (n = 3-6) have been investigated by the B3LYP method at the 6-31++g^** level. Upon calculation, four conclusions have been drawn: (1) In the (H2O)3-5 clusters, cyclic configurations were confirmed to be the most stable. But in the (H2O)3-4 ones, only cyclic configurations could be observed. From n = 5 ((H2O)5 clusters), three-dimensional configuration could be found: (2) In the (H2O)6 clusters, all configurations are inclined to be three-dimensional except the most stable configuration which is cyclic; (3) The stable order of (H2O)6 clusters indicates that it is the arrangement of hydrogen bond that plays a decisive role in the cluster stabilities, the zero-point energy is also important, and cluster stabilities are independent on the number of hydrogen bonds; (4) There exist strong cooperativity and superadditivity in the (H2O)n clusters.展开更多
Structural and electronic properties of PbnAgn(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic Pb...Structural and electronic properties of PbnAgn(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic PbnAgn(n=2–12)clusters were viewed as the initial structures,then,those were calculated by ab initio molecular dynamics(AIMD)to search possible global minimum energy structures of PbnAgn clusters,finally,the ground state structures of PbnAgn(n=2–12)clusters were achieved.According to the structural evolution of lowest energy structures,Ag atoms prefer gather in the central sites while Pb atoms prefer external positions in PbnAgn(n=2–12)clusters,which is in excellent agreement with experimental results from literature and the application in metallurgy.The average binding energies,HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities,chemical hardnessη,HOMO orbits,LUMO orbits and density of states of PbnAgn(n=2–12)clusters were calculated.The results indicate that the values of HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities and chemical hardnessηshow obvious odd-even oscillations when n≤5,PbnAgn(n=2–12)clusters become less chemically stable and show insulator-to-metal transition with the variation of cluster size n,PbnAgn(n≥9)cluster are good candidates to study the properties of PbAg alloys.Those can be well explained by the density of states(DOS)distributions of Pb atoms and Ag atoms between–0.5 Ha and 0.25 Ha in PbnAgn(n=2–12)clusters.展开更多
Divalent metal clusters have received great attention due to the interesting size-induced nonmetal-to-metal transition and fascinating properties dependent on cluster size,shape,and doping.In this work,the combination...Divalent metal clusters have received great attention due to the interesting size-induced nonmetal-to-metal transition and fascinating properties dependent on cluster size,shape,and doping.In this work,the combination of the CALYPSO code and density functional theory(DFT)optimization is employed to explore the structural properties of neutral and anionic Mg_(n+1) and SrMgn(n=2-12)clusters.The results exhibit that as the atomic number of Mg increases,Sr atoms are more likely to replace Mg atoms located in the skeleton convex cap.By analyzing the binding energy,second-order energy difference and the charge transfer,it can be found the SrMg9 cluster with tower framework presents outstanding stability in a studied size range.Further,bonding characteristic analysis reveals that the stability of SrMg9 can be improved due to the strong s-p interaction among the atomic orbitals of Sr and Mg atoms.展开更多
This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structure...This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n : 4. With the increase of the cluster size (n=6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B-As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.展开更多
The geometric structures, stabilities, and electronic properties of (GaAs)n tubelike clusters at up to n = 120 and single-walled GaAs nanotubes (GaAsNTs) were studied by density functional theory (DFT) calculati...The geometric structures, stabilities, and electronic properties of (GaAs)n tubelike clusters at up to n = 120 and single-walled GaAs nanotubes (GaAsNTs) were studied by density functional theory (DFT) calculations. A family of stable tubelike structures with a Ga-As alternating arrangement were observed when n ≥ 8 and their structural units (four-membered rings and six-membered rings) obey the general developing formula. The average binding energies of the clusters show that the tubelike cluster with eight atoms in the cross section is the most stable cluster. The size- dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaAsNTs can be synthesized experimentally. We also found that the single-walled GaAsNTs can be prepared by the proper assembly of tubelike clusters to form semiconductors with large band gaps.展开更多
The geometry,stability,binding energy and electronic properties of(SiO2)n and Ge(SiO2)n clusters(n = 7) have been investigated by Density functional theory(DFT).The results show that the lowest energy structur...The geometry,stability,binding energy and electronic properties of(SiO2)n and Ge(SiO2)n clusters(n = 7) have been investigated by Density functional theory(DFT).The results show that the lowest energy structures of Ge(SiO2)n are obtained by adding one Ge on the end site of the O atom or the Si near end site of the O atom in(SiO2)n.The chemical activation of Ge-(SiO2)n is improved compared with(SiO2)n.The calculated second-order difference of energies and fragmentation energies show that the Ge(SiO2)n clusters with n = 2 or 5 are stable.展开更多
The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ioniza...The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.展开更多
The possible geometrical structures and relative stabilities of semiconductor microclusters Ga\-\%n\%P\-\%n(n\%=1\_4) were studied by virtue of density functional calculations with generalized gradient approximation(B...The possible geometrical structures and relative stabilities of semiconductor microclusters Ga\-\%n\%P\-\%n(n\%=1\_4) were studied by virtue of density functional calculations with generalized gradient approximation(B3LYP). For the most stable isomers of Ga\-\%n\%P\-\%n(n\%=1\_4) clusters, the electronic structure, vibrational properties, dipole moment, polarizability and ionization potential were analyzed by means of HF, MP2, CISD and B3LYP methods with different basis sets.展开更多
The stable structures and stabilities of AgnH2S(n = 1-10) clusters have been calculated using the B3P86-DFT method. The results predicate that the stable geometries of AgnH2 S clusters can be got by directly adding ...The stable structures and stabilities of AgnH2S(n = 1-10) clusters have been calculated using the B3P86-DFT method. The results predicate that the stable geometries of AgnH2 S clusters can be got by directly adding the H2 S molecule on different sites of Agn clusters. Agn clusters would like to bond with sulfur atom and the H2 S molecules are partial to adsorb at the top site in the clusters. After adsorption, the structures of Agn clusters and H2 S molecule keep the original structures except Ag9. The binding energy of AgnH2 S is distinctly larger than that of pure Agn clusters. The second difference in energy and the HOMO and LUMO gaps of Agn and AgnH2 S exhibit an obvious odd-even oscillation, which demonstrate that the stabilities of even-numbered silver clusters are relatively more stable than the neighboring odd-numbered silver clusters. Mulliken population analysis shows that charges always transfer from the H2 S molecule to Agn clusters in all clusters.展开更多
The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional ...The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O.The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states(DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.展开更多
Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe_(n)Ti_(13-n)clusters and measure the thermal expansion of Fe_(n)Ti_(13-n).The volume of Fe_(n)Ti_(13-n)clu...Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe_(n)Ti_(13-n)clusters and measure the thermal expansion of Fe_(n)Ti_(13-n).The volume of Fe_(n)Ti_(13-n)clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect.It has been found that Fe_(6)Ti_(7),Fe_9Ti_(4),Fe_(11)Ti_(2),and Fe_(13)clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion.A prerequisite for the magneto-volume effect of Fe_(n)Ti_(13-n)clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined.Furthermore,the magneto-volume behaviors of Fe_(n)Ti_(13-n)clusters are qualitatively characterized by the energy contour map.Our results shed light on the mechanism of the magneto-volume effect in Fe_(n)Ti_(13-n)clusters during thermal expansion,which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.展开更多
We calculate the magnetic properties of small Fe N clusters( N =2~7,9,13,15) by using a parameterized Hubbard tight binding spd band model Hamiltonian, with the parameters obtained from nonorthogonal Hamiltonian para...We calculate the magnetic properties of small Fe N clusters( N =2~7,9,13,15) by using a parameterized Hubbard tight binding spd band model Hamiltonian, with the parameters obtained from nonorthogonal Hamiltonian parameters. the average magnetic moments, and the spin polarized charge distribution within clusters are in agreement with those obtained by first principle and tight binding calculations. The effect of the nonorthogonal basis is discussed.展开更多
文摘Usually, models of globular star clusters are created by analyzing their luminosity and other observation parameters. The goal of this work is to create stable models of globular clusters based on the laws of mechanics. It is necessary to set the coordinates, velocities and masses of the stars so that as a result of their gravitational interaction the globular cluster is not destroyed. This is not an easy task, and it has been solved in this paper. Using an exact solution of the axisymmetric gravitational interaction of N-bodies, single-layer spherical structures were created. They are combined into multilayer models of globular clusters. An algorithm and a program for their creation is described. As a result of solving the problem of gravitational interaction of N bodies, evolution of 5-, 10-, and 15-layer structures was studied. During the inter-body interaction, there proceeds a transition from the initial specially organized structure to a structure with bodies, uniformly distributed in space. The number of inter-body collisions decreases, and the globular cluster model passes into the stable form of its existence. The collisions of bodies and the acquisition of rotational motion and thermal energy by them are considered. As a result of the passage to scaled dimensions, the results were recalculated to the conditions of globular star clusters. The periods of rotation and the temperatures of merged stars are calculated. Attention is paid to a decreased central-body mass in the analyzed models of globular star clusters.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10964012)the Prior Developing Subject Foundation of Xinjiang Normal University
文摘This paper studies the small molybdenum clusters of Mon (n=2 8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n = 7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo-N-N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N-N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.
基金Project supported by the Natural Science Foundation of Tangshan Teacher’s College (No. 04C06)
文摘The stable configurations and hydrogen bond nature of (H2O)n clusters (n = 3-6) have been investigated by the B3LYP method at the 6-31++g^** level. Upon calculation, four conclusions have been drawn: (1) In the (H2O)3-5 clusters, cyclic configurations were confirmed to be the most stable. But in the (H2O)3-4 ones, only cyclic configurations could be observed. From n = 5 ((H2O)5 clusters), three-dimensional configuration could be found: (2) In the (H2O)6 clusters, all configurations are inclined to be three-dimensional except the most stable configuration which is cyclic; (3) The stable order of (H2O)6 clusters indicates that it is the arrangement of hydrogen bond that plays a decisive role in the cluster stabilities, the zero-point energy is also important, and cluster stabilities are independent on the number of hydrogen bonds; (4) There exist strong cooperativity and superadditivity in the (H2O)n clusters.
基金Project(51664032)supported by the Regional Foundation of the National Natural Science Foundation of ChinaProject(51474116)supported by the General Program of the National Natural Science Foundation of China+5 种基金Project(U1502271)supported by the Joint Foundation of the NSFC-Yunnan Province,ChinaProject(2014HA003)supported by the Cultivating Plan Program for the Leader in Science and Technology of Yunnan Province,ChinaProject(2014RA4018)supported by the Program for Nonferrous Metals Vacuum Metallurgy Innovation Team of Ministry of Science and Technology,ChinaProject(2016YFC0400404)supported by the National Key Research and Development Program of ChinaProject(51504115)supported by the Youth Program of National Natural Science Foundation of ChinaProject(IRT_17R48)supported by the Program for Innovative Research Team in University of Ministry of Education of China
文摘Structural and electronic properties of PbnAgn(n=2–12)clusters were investigated by density functional theory with generalized gradient approximation at BLYP level in DMol3 program package.The optimized bimetallic PbnAgn(n=2–12)clusters were viewed as the initial structures,then,those were calculated by ab initio molecular dynamics(AIMD)to search possible global minimum energy structures of PbnAgn clusters,finally,the ground state structures of PbnAgn(n=2–12)clusters were achieved.According to the structural evolution of lowest energy structures,Ag atoms prefer gather in the central sites while Pb atoms prefer external positions in PbnAgn(n=2–12)clusters,which is in excellent agreement with experimental results from literature and the application in metallurgy.The average binding energies,HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities,chemical hardnessη,HOMO orbits,LUMO orbits and density of states of PbnAgn(n=2–12)clusters were calculated.The results indicate that the values of HOMO-LUMO gaps,vertical ionization potentials,vertical electron affinities and chemical hardnessηshow obvious odd-even oscillations when n≤5,PbnAgn(n=2–12)clusters become less chemically stable and show insulator-to-metal transition with the variation of cluster size n,PbnAgn(n≥9)cluster are good candidates to study the properties of PbAg alloys.Those can be well explained by the density of states(DOS)distributions of Pb atoms and Ag atoms between–0.5 Ha and 0.25 Ha in PbnAgn(n=2–12)clusters.
基金the National Natural Science Foundation of China(Grant No.11404008)the Artificial Intelligence Key Laboratory of Sichuan Province,China(Grant No.2018RYJ07)+2 种基金the Innovation Fund of Postgraduate Sichuan University of Science&Engineering,China(Grant Nos.y202007 and y2021008)the Innovation and Entrepreneurship Training Program of Sichuan Province,China(Grant Nos.S202010622080 and S202010622082)the Innovation and Entrepreneurship Training Program of Sichuan University of Science&Engineering,China(Grant No.cx2019005)。
文摘Divalent metal clusters have received great attention due to the interesting size-induced nonmetal-to-metal transition and fascinating properties dependent on cluster size,shape,and doping.In this work,the combination of the CALYPSO code and density functional theory(DFT)optimization is employed to explore the structural properties of neutral and anionic Mg_(n+1) and SrMgn(n=2-12)clusters.The results exhibit that as the atomic number of Mg increases,Sr atoms are more likely to replace Mg atoms located in the skeleton convex cap.By analyzing the binding energy,second-order energy difference and the charge transfer,it can be found the SrMg9 cluster with tower framework presents outstanding stability in a studied size range.Further,bonding characteristic analysis reveals that the stability of SrMg9 can be improved due to the strong s-p interaction among the atomic orbitals of Sr and Mg atoms.
基金supported by the National Natural Science Foundation of China (Grant No. 10964012)the Priority Subject Program for Theoretical Physics of Xinjiang Normal University and the Fund of the Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. xjedu2009i27)the Science and Technology Innovation Foundation for Graduate Students of Xinjiang Normal University (Grant No. 20101205)
文摘This paper investigates the lowest-energy structures, stabilities and electronic properties of (BAs)n clusters (n=1- 14) by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n : 4. With the increase of the cluster size (n=6), the (BAs)n clusters tend to adopt cage-like structures, which can be considered as being built from B2As2 and six-membered rings with B-As bond alternative arrangement. The binding energy per atom, second-order energy differences, vertical electron affinity and vertical ionization potential are calculated and discussed. The caculated HOMO-LUMO gaps reveal that the clusters have typical semiconductor characteristics. The analysis of partial density of states suggests that there are strong covalence and molecular characteristics in the clusters.
基金Project supported by the Key Subject of Theoretical Physics of Xinjiang Uygur Autonomous Region(Young Teachers Scientific Research Fund),Chinathe Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(Grant No.2010211A21)the Key Project of Higher Education of Xinjiang Uygur Autonomous Region,China(Grant No.xjedu2009i27)
文摘The geometric structures, stabilities, and electronic properties of (GaAs)n tubelike clusters at up to n = 120 and single-walled GaAs nanotubes (GaAsNTs) were studied by density functional theory (DFT) calculations. A family of stable tubelike structures with a Ga-As alternating arrangement were observed when n ≥ 8 and their structural units (four-membered rings and six-membered rings) obey the general developing formula. The average binding energies of the clusters show that the tubelike cluster with eight atoms in the cross section is the most stable cluster. The size- dependent properties of the frontier molecular orbital surfaces explain why the long and stable tubelike clusters can be obtained successfully. They also illustrate the reason why GaAsNTs can be synthesized experimentally. We also found that the single-walled GaAsNTs can be prepared by the proper assembly of tubelike clusters to form semiconductors with large band gaps.
基金Project supported by the foundation start up for high level talents of Shihezi university (No. RCZX200747)
文摘The geometry,stability,binding energy and electronic properties of(SiO2)n and Ge(SiO2)n clusters(n = 7) have been investigated by Density functional theory(DFT).The results show that the lowest energy structures of Ge(SiO2)n are obtained by adding one Ge on the end site of the O atom or the Si near end site of the O atom in(SiO2)n.The chemical activation of Ge-(SiO2)n is improved compared with(SiO2)n.The calculated second-order difference of energies and fragmentation energies show that the Ge(SiO2)n clusters with n = 2 or 5 are stable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11264020 and 11364023)the Science Foundation of Education Committee of Jiangxi Province,China(Grant Nos.GJJ12463,11530,and 11540)+1 种基金the Doctoral Startup Fund of Jingguangshang University,China(Grant No.JZB11003)the Key Subject of Atomic and Molecular Physics in Jiangxi Province,China(Grant No.2011-2015)
文摘The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.
基金Supported by the West Visiting Scholar Foundation of the Educational Ministry of China and the Natiional NaturalScience Foundation of China(No.10 3470 0 7)
文摘The possible geometrical structures and relative stabilities of semiconductor microclusters Ga\-\%n\%P\-\%n(n\%=1\_4) were studied by virtue of density functional calculations with generalized gradient approximation(B3LYP). For the most stable isomers of Ga\-\%n\%P\-\%n(n\%=1\_4) clusters, the electronic structure, vibrational properties, dipole moment, polarizability and ionization potential were analyzed by means of HF, MP2, CISD and B3LYP methods with different basis sets.
基金supported by the National Natural Science Foundation of China(11247229,11304246)the Scientific Research Program Fund by Shaanxi Provincial Education Department(2013JK0629)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2014JQ6206)the Innovation and Entrepreneurship Training Project of Provincial College Students
文摘The stable structures and stabilities of AgnH2S(n = 1-10) clusters have been calculated using the B3P86-DFT method. The results predicate that the stable geometries of AgnH2 S clusters can be got by directly adding the H2 S molecule on different sites of Agn clusters. Agn clusters would like to bond with sulfur atom and the H2 S molecules are partial to adsorb at the top site in the clusters. After adsorption, the structures of Agn clusters and H2 S molecule keep the original structures except Ag9. The binding energy of AgnH2 S is distinctly larger than that of pure Agn clusters. The second difference in energy and the HOMO and LUMO gaps of Agn and AgnH2 S exhibit an obvious odd-even oscillation, which demonstrate that the stabilities of even-numbered silver clusters are relatively more stable than the neighboring odd-numbered silver clusters. Mulliken population analysis shows that charges always transfer from the H2 S molecule to Agn clusters in all clusters.
基金partially supported by the National Natural Science Foundation of China(No.11404074)
文摘The energetic pathways of adsorption and activation of carbon dioxide (CO2) on low-lying compact (TiO2)n clusters are systematically investigated by using electronic structure calculations based on density-functional theory (DFT). Our calculated results show that CO2 is adsorbed preferably on the bridge O atom of the clusters, forming a "chemisorption" carbonate complex, while the CO is adsorbed preferably to the Ti atom of terminal Ti-O.The computed carbonate vibrational frequency values are in good agreement with the results obtained experimentally, which suggests that CO2 in the complex is distorted slightly from its undeviating linear configuration. In addition, the analyses of electronic parameters, electronic density, ionization potential, HOMO-LUMO gap, and density of states(DOS) confirm the charge transfer and interaction between CO2 and the cluster. From the predicted energy profiles, CO2 can be easily adsorbed and activated, while the activation of CO2 on (TiO2)n clusters are structure-dependent and energetically more favorable than that on the bulk TiO2. Overall, this study critically highlights how the small (TiO2)n clusters can influence the CO2 adsorption and activation which are the critical steps for CO2 reduction the surface of a catalyst and subsequent conversion into industrially relevant chemicals and fuels.
基金the support from the National Natural Science Foundation of China(Grant No.52171038)key R&D projects in Shandong Province(Grant No.2021SFGC1001)+1 种基金supported by the Special Funding in the Project of the Taishan Scholar Construction Engineering and the program of Jinan Science and Technology Bureau(Grant No.2020GXRC019)new material demonstration platform construction project from Ministry of Industry and Information Technology of China(Grant No.2020-370104-34-03-043952-01-11)。
文摘Ab initio molecular dynamics calculations have been carried out to search for the ground state structure of Fe_(n)Ti_(13-n)clusters and measure the thermal expansion of Fe_(n)Ti_(13-n).The volume of Fe_(n)Ti_(13-n)clusters during thermal expansion is jointly determined by anharmonic interaction and magneto-volume effect.It has been found that Fe_(6)Ti_(7),Fe_9Ti_(4),Fe_(11)Ti_(2),and Fe_(13)clusters can exhibit the remarkable magneto-volume effect with abnormal volume behaviors and magnetic moment behaviors during thermal expansion.A prerequisite for the magneto-volume effect of Fe_(n)Ti_(13-n)clusters during thermal expansion has been revealed and the magnitude of the magneto-volume is also approximately determined.Furthermore,the magneto-volume behaviors of Fe_(n)Ti_(13-n)clusters are qualitatively characterized by the energy contour map.Our results shed light on the mechanism of the magneto-volume effect in Fe_(n)Ti_(13-n)clusters during thermal expansion,which can guide the design of nanomaterials with zero expansion or even controllable expansion properties.
文摘We calculate the magnetic properties of small Fe N clusters( N =2~7,9,13,15) by using a parameterized Hubbard tight binding spd band model Hamiltonian, with the parameters obtained from nonorthogonal Hamiltonian parameters. the average magnetic moments, and the spin polarized charge distribution within clusters are in agreement with those obtained by first principle and tight binding calculations. The effect of the nonorthogonal basis is discussed.