Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interfe...Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interference, radio resource allocation at both sides should be carefully re-optimized. In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system(DAS) coexist via spectrum sharing. We particularly utilize the radio map(RM) to reduce the system overhead for channel acquisition. Based on the large-scale channel state information at the transmitter(CSIT), which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful leakage interference to the terrestrial mobile users. Simulation results demonstrate that the proposed RM-based coordination scheme can significantly promote the performance of satellite terrestrial coexistence, although the small-scale channel fading has been ignored in the formulated optimization.展开更多
Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Bas...Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Based on the sources of error,there are two models.One assumes error lies in a bounded region,the other assumes random error.Accordingly,we propose two joint antenna selection(AS) and robustbeamforming schemes aiming to minimize the total transmit power at antenna nodes subject to quality of service(QoS) guarantee for all the mobile users(MUs) in multicell DAS.This problem is mathematically intractable.For the bounded error model,we cast it into a semidefinite program(SDP) using semidefinite relaxation(SDR) and S-procedure.For the second,we first design outage constrained robust beamforming and then formulate it as an SDP based on the Bernstein-type inequality,which we generalize it to the multi-cell DAS.Simulation results verify the effectiveness of the proposed methods.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
In this paper, the asymptotic sum rate of a multi-user distributed antenna system (DAS) is analyzed. To mitigate inter-user interference, minimum mean squared error (MMSE) receivers are utilized to cooperatively p...In this paper, the asymptotic sum rate of a multi-user distributed antenna system (DAS) is analyzed. To mitigate inter-user interference, minimum mean squared error (MMSE) receivers are utilized to cooperatively process received signals in the uplink. It shows that inter-user interference is efficiently mitigated and the uplink sum rate of a multi-user DAS is greatly improved by adopting MMSE receivers. For very large number of users and remote antennas, the asymptotic uplink sum rate of MMSE receivers is derived by using virtue of the random matrix theory, which can be The approximation is verified to be quite accurate by Monte Carlo simply calculated in an iterative way simulations.展开更多
To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the ...To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the antenna elements (AEs). First, the outage probability at a fixed location in the cell is investigated. Next, an analytical expression of the OPC is derived, which is a function of the AE locations. Then the OPC is used as the objective function of the antenna placement optimization problem, and the complex- encoding GA is used to find the optimal AE locations in the cell. Numerical results show that the optimal AE locations are symmetric about the cell center, and the outage probability contours are also given with the optimal antenna placement. The algorithm has a good convergence and can also be used to determine the number of AEs which should be installed in order to satisfy the certain OPC value. Lastly, verification of the OPC's analytical expression is carried out by Monte Carlo simulations. The OPC with optimal AE locations is about 10% lower than the values with completely random located AEs.展开更多
Prior research documents income-decreasing earnings management in the situation when true earnings exceed the targets by a substantial amount and in the situation when true earnings fall far below the targets and acco...Prior research documents income-decreasing earnings management in the situation when true earnings exceed the targets by a substantial amount and in the situation when true earnings fall far below the targets and accounting reserves are not sufficient to reach the targets. These two situations are well-known as cookie jar and big bath earnings management. True earnings are defined as pre-managed earnings (PMEs) and are measured as reported earnings minus adjusted discretionary accruals (DAs). However, the use of PMEs can induce a spurious association between earnings management and PMEs above or below the benchmarks, which are known as the backing-out problem (Lim & Lustgarten, 2002). This study reexamines the cookie jar and big bath type of earnings management and addresses in particular the issue of backing-out problem. By using an Australian sample of 3,326 observations covering all listed firms in the Australian Securities Exchange (ASX) for a period from 1999 to 2006, this study suggests that the finding of cookie jar accounting is not simply a consequence of the backing-out problem. The results show that an income-decreasing earnings management occurs when PMEs are well above the targets. This is consistent with the first argument of cookie jar accounting--Finns reduce current earnings in order to save some income for the future. However, the results do not support the big bath accounting theory.展开更多
A fast SAR imaging algorithm for nearfield subsurface forward-looking ground penetrating radar (FLGPR) is presented. By using nonstationary convolution filter, the refocused image spectrum can be reconstructed direc...A fast SAR imaging algorithm for nearfield subsurface forward-looking ground penetrating radar (FLGPR) is presented. By using nonstationary convolution filter, the refocused image spectrum can be reconstructed directly from the baekseattered signal spectrum of target area. The experimental results show the proposed method can fast achieve image refocusing. Also it has higher computational efficiency than the phase-shift migration approach and the delay-and-sum (DAS) approach.展开更多
Potato virus S (PVS) often causes significant losses in potato production in potato-growing countries. In this study, the ordinary strain of PVS (PVS 0) was purified from PVS-infected potato plants and used as the...Potato virus S (PVS) often causes significant losses in potato production in potato-growing countries. In this study, the ordinary strain of PVS (PVS 0) was purified from PVS-infected potato plants and used as the immunogen to produce hybridomas secreting monoclonal antibodies (MAbs). Five highly specific and sensitive murine MAbs (1A3, 16C10, 18A9, 20B12, and 22H4) against PVS were prepared using conventional hybridoma technology. Using these MAbs, tissue print-enzyme-linked immunosorbent assay (ELISA), dot-ELISA, and double-antibody sandwich (DAS)- ELISA were developed for sensitive and specific detection of PVS infection in potato plants. The results of sensitivity assays revealed that PVS could be reliably detected in PVS-infected leaf crude extracts diluted at 1:10240 and 1:163840 (w/v, g/ml)in phosphate buffer saline (PBS) by dot-ELISA and DAS-ELISA, respectively. Twenty-two samples collected from potato fields in Yunnan Province, China were tested for PVS infection using the serological assays we had developed, and 14 of them were found to be positive. This indicates that PVS is now prevalent in potato fields in Yunnan Province.展开更多
High spectral efficiency distributed antenna systems (DAS) require vertical Bell-Labs layered space-time (V-BLAST) like spatial multiplexing schemes. However, unlike normal point-to-point multiple input multiple o...High spectral efficiency distributed antenna systems (DAS) require vertical Bell-Labs layered space-time (V-BLAST) like spatial multiplexing schemes. However, unlike normal point-to-point multiple input multiple output (MIMO) channels, DAS channels have different large-scale fadings from different transmit antennas, thus making equal power and rate transmission that is feasible in MIMO channels unrealistic in DAS channels. This paper proposes a novel transmit antenna selection scheme with power and rate allocation. The scheme is based on large-scale fading (shadow fading and path loss) and is suitable for VBLAST structures with zero-forcing and successive interference cancellation (ZF-SIC) receivers, ensuring balanced average symbol error rate (SER) performance in each layer. On the receiver side, a fixed detection order is used, which is obtained in the transmit antenna selection process. Simulation results show that the proposed scheme gives good performance gains over equal power and rate transmission systems without antenna selection.展开更多
The distributed antenna system (DAS) is considered as a promising architecture for future wireless access. This paper describes the uplink of a power-controlled circular-layout DAS (CL-DAS) with minimum mean-squar...The distributed antenna system (DAS) is considered as a promising architecture for future wireless access. This paper describes the uplink of a power-controlled circular-layout DAS (CL-DAS) with minimum mean-square error (MMSE) receivers. Results from random matrix theory are used to show that for such a DAS, the per-user sum rate and the total transmit power both converge as the number of users and antennas goes to infinity with a constant ratio of antennas to users. The relationship between the asymptotic per-user sum rate and the asymptotic total transmit power is given for all possible values of the radius of the circle on which antennas are placed. This rate-power relationship is then used to find the optimal radius. With this optimal radius, the CL-DAS is proved to offer a significant gain compared with a traditional co-located antenna system. Simulation results demonstrate the validity of the analysis and the superiority of the DAS.展开更多
基金supported in part by the National Science Foundation of China under grant No.61701457
文摘Coexistence of satellite and terrestrial wireless communication systems in the same frequency band is quite promising for addressing the challenge of spectrum scarcity. To cope with the inevitable inter-system interference, radio resource allocation at both sides should be carefully re-optimized. In this paper, we focus on a scenario where a satellite communication system and a terrestrial distributed antenna system(DAS) coexist via spectrum sharing. We particularly utilize the radio map(RM) to reduce the system overhead for channel acquisition. Based on the large-scale channel state information at the transmitter(CSIT), which is derived from the RM, we propose an optimized power allocation scheme to improve the achievable sum rate of the terrestrial system. For the satellite side, an opportunistic user scheduling scheme is presented, to reduce the harmful leakage interference to the terrestrial mobile users. Simulation results demonstrate that the proposed RM-based coordination scheme can significantly promote the performance of satellite terrestrial coexistence, although the small-scale channel fading has been ignored in the formulated optimization.
基金ACKNOWLEDGEMENTS This work is supported by Natural Science Foundation of China (No. 61340035) and Guangzhou science and technology plan projects (2014-132000764).
文摘Most of studies on Distributed Antenna System(DAS) focus on maximizing the sum capacity and perfect channel state information at transmitter(CSIT).However,CSI is inevitable imperfect in practical wireless networks.Based on the sources of error,there are two models.One assumes error lies in a bounded region,the other assumes random error.Accordingly,we propose two joint antenna selection(AS) and robustbeamforming schemes aiming to minimize the total transmit power at antenna nodes subject to quality of service(QoS) guarantee for all the mobile users(MUs) in multicell DAS.This problem is mathematically intractable.For the bounded error model,we cast it into a semidefinite program(SDP) using semidefinite relaxation(SDR) and S-procedure.For the second,we first design outage constrained robust beamforming and then formulate it as an SDP based on the Bernstein-type inequality,which we generalize it to the multi-cell DAS.Simulation results verify the effectiveness of the proposed methods.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
文摘In this paper, the asymptotic sum rate of a multi-user distributed antenna system (DAS) is analyzed. To mitigate inter-user interference, minimum mean squared error (MMSE) receivers are utilized to cooperatively process received signals in the uplink. It shows that inter-user interference is efficiently mitigated and the uplink sum rate of a multi-user DAS is greatly improved by adopting MMSE receivers. For very large number of users and remote antennas, the asymptotic uplink sum rate of MMSE receivers is derived by using virtue of the random matrix theory, which can be The approximation is verified to be quite accurate by Monte Carlo simply calculated in an iterative way simulations.
基金supported by the National Science and Technology Major Project: the Next Generation Wireless Mobile Communication Network (2009ZX03004-001)
文摘To minimize the outage probability of the cell (OPC) in downlink distributed antenna systems with selection transmission, a complex-encoding genetic algorithm (GA) is proposed to find the optimal locations of the antenna elements (AEs). First, the outage probability at a fixed location in the cell is investigated. Next, an analytical expression of the OPC is derived, which is a function of the AE locations. Then the OPC is used as the objective function of the antenna placement optimization problem, and the complex- encoding GA is used to find the optimal AE locations in the cell. Numerical results show that the optimal AE locations are symmetric about the cell center, and the outage probability contours are also given with the optimal antenna placement. The algorithm has a good convergence and can also be used to determine the number of AEs which should be installed in order to satisfy the certain OPC value. Lastly, verification of the OPC's analytical expression is carried out by Monte Carlo simulations. The OPC with optimal AE locations is about 10% lower than the values with completely random located AEs.
文摘Prior research documents income-decreasing earnings management in the situation when true earnings exceed the targets by a substantial amount and in the situation when true earnings fall far below the targets and accounting reserves are not sufficient to reach the targets. These two situations are well-known as cookie jar and big bath earnings management. True earnings are defined as pre-managed earnings (PMEs) and are measured as reported earnings minus adjusted discretionary accruals (DAs). However, the use of PMEs can induce a spurious association between earnings management and PMEs above or below the benchmarks, which are known as the backing-out problem (Lim & Lustgarten, 2002). This study reexamines the cookie jar and big bath type of earnings management and addresses in particular the issue of backing-out problem. By using an Australian sample of 3,326 observations covering all listed firms in the Australian Securities Exchange (ASX) for a period from 1999 to 2006, this study suggests that the finding of cookie jar accounting is not simply a consequence of the backing-out problem. The results show that an income-decreasing earnings management occurs when PMEs are well above the targets. This is consistent with the first argument of cookie jar accounting--Finns reduce current earnings in order to save some income for the future. However, the results do not support the big bath accounting theory.
基金This work was supported by the National Nature Science Foundation of China under Grant No. 60472014.
文摘A fast SAR imaging algorithm for nearfield subsurface forward-looking ground penetrating radar (FLGPR) is presented. By using nonstationary convolution filter, the refocused image spectrum can be reconstructed directly from the baekseattered signal spectrum of target area. The experimental results show the proposed method can fast achieve image refocusing. Also it has higher computational efficiency than the phase-shift migration approach and the delay-and-sum (DAS) approach.
基金Project supported by the National Key Research and Development Project of China(No.2017YFD0201604)the Fund for Agroscientific Research in the Public Interest(No.201303028),China
文摘Potato virus S (PVS) often causes significant losses in potato production in potato-growing countries. In this study, the ordinary strain of PVS (PVS 0) was purified from PVS-infected potato plants and used as the immunogen to produce hybridomas secreting monoclonal antibodies (MAbs). Five highly specific and sensitive murine MAbs (1A3, 16C10, 18A9, 20B12, and 22H4) against PVS were prepared using conventional hybridoma technology. Using these MAbs, tissue print-enzyme-linked immunosorbent assay (ELISA), dot-ELISA, and double-antibody sandwich (DAS)- ELISA were developed for sensitive and specific detection of PVS infection in potato plants. The results of sensitivity assays revealed that PVS could be reliably detected in PVS-infected leaf crude extracts diluted at 1:10240 and 1:163840 (w/v, g/ml)in phosphate buffer saline (PBS) by dot-ELISA and DAS-ELISA, respectively. Twenty-two samples collected from potato fields in Yunnan Province, China were tested for PVS infection using the serological assays we had developed, and 14 of them were found to be positive. This indicates that PVS is now prevalent in potato fields in Yunnan Province.
文摘High spectral efficiency distributed antenna systems (DAS) require vertical Bell-Labs layered space-time (V-BLAST) like spatial multiplexing schemes. However, unlike normal point-to-point multiple input multiple output (MIMO) channels, DAS channels have different large-scale fadings from different transmit antennas, thus making equal power and rate transmission that is feasible in MIMO channels unrealistic in DAS channels. This paper proposes a novel transmit antenna selection scheme with power and rate allocation. The scheme is based on large-scale fading (shadow fading and path loss) and is suitable for VBLAST structures with zero-forcing and successive interference cancellation (ZF-SIC) receivers, ensuring balanced average symbol error rate (SER) performance in each layer. On the receiver side, a fixed detection order is used, which is obtained in the transmit antenna selection process. Simulation results show that the proposed scheme gives good performance gains over equal power and rate transmission systems without antenna selection.
基金Supported by the National Natural Science Foundation of China (No. 90204001)
文摘The distributed antenna system (DAS) is considered as a promising architecture for future wireless access. This paper describes the uplink of a power-controlled circular-layout DAS (CL-DAS) with minimum mean-square error (MMSE) receivers. Results from random matrix theory are used to show that for such a DAS, the per-user sum rate and the total transmit power both converge as the number of users and antennas goes to infinity with a constant ratio of antennas to users. The relationship between the asymptotic per-user sum rate and the asymptotic total transmit power is given for all possible values of the radius of the circle on which antennas are placed. This rate-power relationship is then used to find the optimal radius. With this optimal radius, the CL-DAS is proved to offer a significant gain compared with a traditional co-located antenna system. Simulation results demonstrate the validity of the analysis and the superiority of the DAS.