Coupled dynamic analysis of the Deep Draft Multi-Spar (DDMS) platform and the mooring system under the action of waves and current is carried out in the time domain. Using a geometrically nonlinear finite element me...Coupled dynamic analysis of the Deep Draft Multi-Spar (DDMS) platform and the mooring system under the action of waves and current is carried out in the time domain. Using a geometrically nonlinear finite element method, the mooring-line dynamics is simulated based on the total Lagrangian formulation. Wave groups are obtained by the JONSWAP spectrum and an empirical wave envelope spectrum involving two envelope-based factors Group Height Factor (GFH) and Group Length Factor (GLF). The results show that the wave groups have a significant effect on the motion responses of the platform and the mooring line tensions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50921001)the National High Technology Research and Development Program of China (863 Program, Grant No. 2007AA11Z130)
文摘Coupled dynamic analysis of the Deep Draft Multi-Spar (DDMS) platform and the mooring system under the action of waves and current is carried out in the time domain. Using a geometrically nonlinear finite element method, the mooring-line dynamics is simulated based on the total Lagrangian formulation. Wave groups are obtained by the JONSWAP spectrum and an empirical wave envelope spectrum involving two envelope-based factors Group Height Factor (GFH) and Group Length Factor (GLF). The results show that the wave groups have a significant effect on the motion responses of the platform and the mooring line tensions.