期刊文献+
共找到30,963篇文章
< 1 2 250 >
每页显示 20 50 100
Phase separation and transcriptional regulation in cancer development 被引量:1
1
作者 Yan Gu Ke Wei Jun Wang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期307-321,共15页
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol... Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development. 展开更多
关键词 phase separation transcription regulation CANCer super-enhancer CONDENSATES
下载PDF
Clinical and molecular significance of homologous recombination deficiency positive non-small cell lung cancer in Chinese population:An integrated genomic and transcriptional analysis
2
作者 Yifei Wang Yidan Ma +14 位作者 Lei He Jun Du Xiaoguang Li Peng Jiao Xiaonan Wu Xiaomao Xu Wei Zhou Li Yang Jing Di Changbin Zhu Liming Xu Tianlin Sun Lin Li Dongge Liu Zheng Wang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2024年第3期282-297,共16页
Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not ... Objective:The clinical significance of homologous recombination deficiency(HRD)in breast cancer,ovarian cancer,and prostate cancer has been established,but the value of HRD in non-small cell lung cancer(NSCLC)has not been fully investigated.This study aimed to systematically analyze the HRD status of untreated NSCLC and its relationship with patient prognosis to further guide clinical care.Methods:A total of 355 treatment-naïve NSCLC patients were retrospectively enrolled.HRD status was assessed using the AmoyDx Genomic Scar Score(GSS),with a score of≥50 considered HRD-positive.Genomic,transcriptomic,tumor microenvironmental characteristics and prognosis between HRD-positive and HRDnegative patients were analyzed.Results:Of the patients,25.1%(89/355)were HRD-positive.Compared to HRD-negative patients,HRDpositive patients had more somatic pathogenic homologous recombination repair(HRR)mutations,higher tumor mutation burden(TMB)(P<0.001),and fewer driver gene mutations(P<0.001).Furthermore,HRD-positive NSCLC had more amplifications in PI3K pathway and cell cycle genes,MET and MYC in epidermal growth factor receptor(EGFR)/anaplastic lymphoma kinase(ALK)mutant NSCLC,and more PIK3CA and AURKA in EGFR/ALK wild-type NSCLC.HRD-positive NSCLC displayed higher tumor proliferation and immunosuppression activity.HRD-negative NSCLC showed activated signatures of major histocompatibility complex(MHC)-II,interferon(IFN)-γand effector memory CD8+T cells.HRD-positive patients had a worse prognosis and shorter progressionfree survival(PFS)to targeted therapy(first-and third-generation EGFR-TKIs)(P=0.042).Additionally,HRDpositive,EGFR/ALK wild-type patients showed a numerically lower response to platinum-free immunotherapy regimens.Conclusions:Unique genomic and transcriptional characteristics were found in HRD-positive NSCLC.Poor prognosis and poor response to EGFR-TKIs and immunotherapy were observed in HRD-positive NSCLC.This study highlights potential actionable alterations in HRD-positive NSCLC,suggesting possible combinational therapeutic strategies for these patients. 展开更多
关键词 Non-small cell lung cancer homologous recombination deficiency genetic alterations transcriptional analysis tumor microenvironment PROGNOSIS
下载PDF
Transcription factor OsSPL10 interacts with OsJAmyb to regulate blast resistance in rice 被引量:1
3
作者 Zaofa Zhong Lijing Zhong +4 位作者 Xiang Zhu Yimin Jiang Yihong Zheng Tao Lan Haitao Cui 《The Crop Journal》 SCIE CSCD 2024年第1期301-307,共7页
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t... Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance. 展开更多
关键词 IMMUNITY JASMONATE Oryza sativa OsSPL10 transcription factor
下载PDF
Transcriptional regulation in the development and dysfunction of neocortical projection neurons 被引量:1
4
作者 Ningxin Wang Rong Wan Ke Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期246-254,共9页
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord... Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations. 展开更多
关键词 autism spectrum disorders COGNITION DIFFerENTIATION excitatory circuits intellectual disability NEOCORTEX neurodevelopmental disorders projection neuron specification transcriptional regulation
下载PDF
Tanshinone ⅡA improves Alzheimer’s disease via RNA nuclearenriched abundant transcript 1/microRNA-291a-3p/member RAS oncogene family Rab22a axis 被引量:1
5
作者 Long-Xiu Yang Man Luo Sheng-Yu Li 《World Journal of Psychiatry》 SCIE 2024年第4期563-581,共19页
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho... BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy. 展开更多
关键词 TanshinoneⅡA Alzheimer’s disease Nuclear-enriched abundant transcript 1 Member of RAS oncogene family Rab22a Reactive oxygen species
下载PDF
Wild soybean(Glycine soja)transcription factor GsWRKY40 plays positive roles in plant salt tolerance
6
作者 Minglong Li Man Xue +7 位作者 Huiying Ma Peng Feng Tong Chen Xiaohuan Sun Qiang Li Xiaodong Ding Shuzhen Zhang Jialei Xiao 《The Crop Journal》 SCIE CSCD 2024年第3期766-775,共10页
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p... Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses. 展开更多
关键词 Wild soybean transcription factor Salt stress ROS
下载PDF
Meiotic transcriptional reprogramming mediated by cell-cell communications in humans and mice revealed by scATACseq and scRNA-seq
7
作者 Hai-Quan Wang Xiao-Long Wu +6 位作者 Jing Zhang Si-Ting Wang Yong-Juan Sang Kang Li Chao-Fan Yang Fei Sun Chao-Jun Li 《Zoological Research》 SCIE CSCD 2024年第3期601-616,共16页
Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,... Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression. 展开更多
关键词 Single-cell RNA-seq Single-cell ATAC-seq SPerMATOGENESIS MEIOSIS transcriptional reprogramming Cell-cell communication
下载PDF
Cu Stress-Induced Transcriptome Alterations in Sorghum and Expression Analysis of the Transcription Factor-Encoding Gene SbWRKY24
8
作者 Mingchuan Yang Jia Zheng +4 位作者 Wenhui Yu Yanghua Li YaliWang Zilu Zhang Zhenhui Kang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1503-1521,共19页
Sorghum is not only an important bio-energy crop but also a vital raw material for brewing.Exogenous copper affects the growth and metabolism of crops in specific ways.This study identified 8475 differentially expressed... Sorghum is not only an important bio-energy crop but also a vital raw material for brewing.Exogenous copper affects the growth and metabolism of crops in specific ways.This study identified 8475 differentially expressed genes(DEGs)by high-throughput transcriptome sequencing in the sorghum cultivar‘Jinnuoliang 2’after 24 h of treatment with 10 mM CuSO4.Using GO analysis,476 genes were functionally annotated,which were mainly related to catabolism and biosynthetic processes.Additionally,90 pathways were annotated by employing the KEGG analysis.Among them,glutathione metabolism and peroxisome were induced,while photosynthesis,photosynthesis-antenna protein,and carbon sequestration of photosynthetic organisms were inhibited.Of the DEGs,399 were identified to encode transcription factors belonging to 49 families.This study also identified a WRKY transcription factor-encoding gene SbWRKY24 from the transcriptome data.For studying its function,the relative expression levels of SbWRKY24 in roots and leaves post-treatment with different growth hormones and exposure to a variety of abiotic stresses were detected by RT-qPCR.SbWRKY24 showed treatment-and tis-sue-specific expression patterns,indicating its unique role in stress tolerance.This study lays a theoretical basis for the functional exploration of SbWRKY24,elucidating the mechanism of copper resistance,and elaborating on the stress responses in sorghum.It also guides the exploration of the molecular mechanism of copper ions inducing intracellular signal transduction pathways. 展开更多
关键词 SORGHUM copper stress transcriptOME transcription factor SbWRKY24
下载PDF
The Magnaporthe oryzae effector Avr-PikD suppresses rice immunity by inhibiting an LSD1-like transcriptional activator
9
作者 Jiayuan Guo Yiling Wu +8 位作者 Jianqiang Huang Kaihui Yu Meilian Chen Yijuan Han Zhenhui Zhong Guodong Lu Yonghe Hong Zonghua Wang Xiaofeng Chen 《The Crop Journal》 SCIE CSCD 2024年第2期482-492,共11页
Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs ... Avirulence effectors(Avrs),encoded by plant pathogens,can be recognized by plants harboring the corresponding resistance proteins,thereby initiating effector-triggered immunity(ETI).In susceptible plants,however,Avrs can function as effectors,facilitating infection via effector-triggered susceptibility(ETS).Mechanisms of Avr-mediated ETS remain largely unexplored.Here we report that the Magnaporthe oryzae effector Avr-PikD enters rice cells via the canonical cytoplasmic secretion pathway and suppresses rice basal defense.Avr-PikD interacts with an LSD1-like transcriptional activator AKIP30 of rice,and AKIP30 is also a positive regulator of rice immunity,whereas Avr-PikD impedes its nuclear localization and suppresses its transcriptional activity.In summary,M.oryzae delivers Avr-PikD into rice cells to facilitate ETS by inhibiting AKIP30-mediated transcriptional regulation of immune response against M.oryzae. 展开更多
关键词 Magnaporthe oryzae Avirulence effector Avr-PikD Effector-triggered susceptibility Rice immunity transcriptional activator
下载PDF
Identification of key genes regulating the synthesis of quercetin derivatives in Rosa roxburghii through integrated transcriptomics and metabolomics
10
作者 Liyao Su Min Wu +2 位作者 Tian Zhang Yan Zhong Zongming(Max) Cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期876-887,共12页
Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five differ... Rosa roxburghii fruit is rich in flavonoids, but little is known about their biosynthetic pathways. In this study, we employed transcriptomics and metabolomics to study changes related to the flavonoids at five different stages of R. roxburghii fruit development. Flavonoids and the genes related to their biosynthesis were found to undergo significant changes in abundance across different developmental stages, and numerous quercetin derivatives were identified. We found three gene expression modules that were significantly associated with the abundances of the different flavonoids in R. roxburghii and identified three structural UDP-glycosyltransferase genes directly involved in the synthesis of quercetin derivatives within these modules. In addition, we found that RrBEH4, RrLBD1 and RrPIF8could significantly increase the expression of downstream quercetin derivative biosynthesis genes. Taken together,these results provide new insights into the metabolism of flavonoids and the accumulation of quercetin derivatives in R. roxburghii. 展开更多
关键词 Rosa roxburghii quercetin derivatives weighted gene co-expression network analysis transcription factor transcriptome METABOLOME
下载PDF
Transcriptional regulation of MdPIN7 by MdARF19 during gravityinduced formation of adventitious root GSA in self-rooted apple stock
11
作者 Zenghui Wang Xuemei Yang +5 位作者 Linyue Hu Wei Liu Lijuan Feng Xiang Shen Yanlei Yin Jialin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1073-1084,共12页
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the... Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals. 展开更多
关键词 APPLE Self-rooted stock GRAVITY MdARF19 MdPIN7 Gravitropic set-point angle transcriptional regulation
下载PDF
Integrated analyses of transcriptomics and network pharmacology reveal leukocyte characteristics and functional changes in subthreshold depression,elucidating the curative mechanism of Danzhi Xiaoyao powder
12
作者 Kunyu Li Leiming You +5 位作者 Jianhua Zhen Guangrui Huang Ting Wang Yanan Cai Yunan Zhang Anlong Xu 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第1期3-20,共18页
Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we id... Objective:To investigate the molecular mechanism and identify potential drugs for subthreshold depression(SD),and elucidate the detalied mechanism of Danzhi Xiaoyao powder(DZXY)in SD.Methods:Using RNA-sequencing,we identified differentially expressed genes(DEGs)in leukocytes of SD compared to healthy controls,deciphered their functions and pathways,and identified the hub genes of SD.We also assessed changes in leukocyte transcription factor activity in patients with SD using the TELis platform.The Connectivity Map database was retrieved to screen candidate drugs for SD.Based on network pharmacology,we elucidated the"multi-component,multi-target,and multi-pathway"mechanism of DZXY in the treatment of SD.Results:We identified 1080 DEGs(padj<0.05 and|log2(fold change)l≥1&protein coding)in the leukocytes of patients with SD.These DEGs,including hub genes,were primarily involved in immune and inflammatory response-related processes.Transcription factor activity analysis revealed similarities between the leukocyte transcriptome profile in SD and the conserved transcriptional response to adversities in immune cells.Connectivity Map analysis identified 28 potential drugs for SD treatment,particularly SB-202190 and TWS-119.Constructing the"Direct Compounds-Direct Targets-Pathways"network for DZXY and SD revealed the curative mechanisms of DZXY in SD,primarily including inflammatory response,lipid metabolism,immune response,and other processes.Conclusion:These results provide new insights into the characteristics and functional changes of leukocytes in SD,partially illustrate the pathogenesis of SD,and suggest potential drugs for SD.The curative mechanisms of DZXY in SD are also partially elucidated. 展开更多
关键词 Subthreshold depression LEUKOCYTE mRNAbiomarker CTRA transcription factor activity CMAP Danzhi Xiaoyaopowder Networkpharmacology
下载PDF
Potential and application of abortive transcripts as a novel molecular marker of cancers
13
作者 Tian-Miao Zhang Xiao-Nian Zhu +4 位作者 Shao-Wei Qin Xue-Feng Guo Xue-Kun Xing Li-Feng Zhao Sheng-Kui 《World Journal of Experimental Medicine》 2024年第2期53-61,共9页
Abortive transcript(AT)is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage.Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments.Therefore,th... Abortive transcript(AT)is a 2-19 nt long non-coding RNA that is produced in the abortive initiation stage.Abortive initiation was found to be closely related to RNA polymerase through in vitro experiments.Therefore,the distribution of AT length and the scale of abortive initiation are correlated to the promoter,discriminator,and transcription initiation sequence,and can be affected by transcription elongation factors.AT plays an important role in the occurrence and development of various diseases.Here we summarize the discovery of AT,the factors responsible for AT formation,the detection methods and biological functions of AT,to provide new clues for finding potential targets in the early diagnosis and treatment of cancers. 展开更多
关键词 Abortive transcript Abortive initiation RNA polymerase transcriptION Tumor marker
下载PDF
High-throughput screening system of citrus bacterial cankerassociated transcription factors and its application to the regulation of citrus canker resistance
14
作者 Jia Fu Jie Fan +8 位作者 Chenxi Zhang Yongyao Fu Baohang Xian Qiyuan Yu Xin Huang Wen Yang Shanchun Chen Yongrui He Qiang Li 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期155-165,共11页
One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both prote... One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both proteinDNA as well as protein–protein interactions for the regulatory network.To detect such interactions in CBC resistant regulation,a citrus high-throughput screening system with 203 CBC-inducible transcription factors(TFs),were developed.Screening the upstream regulators of target by yeast-one hybrid(Y1H)methods was also performed.A regulatory module of CBC resistance was identified based on this system.One TF(CsDOF5.8)was explored due to its interactions with the 1-kb promoter fragment of CsPrx25,a resistant gene of CBC involved in reactive oxygen species(ROS)homeostasis regulation.Electrophoretic mobility shift assay(EMSA),dual-LUC assays,as well as transient overexpression of CsDOF5.8,further validated the interactions and transcriptional regulation.The CsDOF5.8–CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2homeostasis.The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.In addition,it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties. 展开更多
关键词 citrus bacterial canker(CBC) high-throughput screening system transcription factor(TF) yeast-one hybrid(Y1H) CsPrx25
下载PDF
Effects of interleukin-10 treated macrophages on bone marrow mesenchymal stem cells via signal transducer and activator of transcription 3 pathway
15
作者 Meng-Hao Lyu Ce Bian +3 位作者 Yi-Ping Dou Kang Gao Jun-Ji Xu Pan Ma 《World Journal of Stem Cells》 SCIE 2024年第5期560-574,共15页
BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can sign... BACKGROUND Alveolar bone defects caused by inflammation are an urgent issue in oral implant surgery that must be solved.Regulating the various phenotypes of macrophages to enhance the inflammatory environment can significantly affect the progression of diseases and tissue engineering repair process.AIM To assess the influence of interleukin-10(IL-10)on the osteogenic differentiation of bone marrow mesenchymal stem cells(BMSCs)following their interaction with macrophages in an inflammatory environment.METHODS IL-10 modulates the differentiation of peritoneal macrophages in Wistar rats in an inflammatory environment.In this study,we investigated its impact on the proliferation,migration,and osteogenesis of BMSCs.The expression levels of signal transducer and activator of transcription 3(STAT3)and its activated form,phos-phorylated-STAT3,were examined in IL-10-stimulated macrophages.Subsequently,a specific STAT3 signaling inhibitor was used to impede STAT3 signal activation to further investigate the role of STAT3 signaling.RESULTS IL-10-stimulated macrophages underwent polarization to the M2 type through substitution,and these M2 macrophages actively facilitated the osteogenic differentiation of BMSCs.Mechanistically,STAT3 signaling plays a crucial role in the process by which IL-10 influences macrophages.Specifically,IL-10 stimulated the activation of the STAT3 signaling pathway and reduced the macrophage inflammatory response,as evidenced by its diminished impact on the osteogenic differentiation of BMSCs.CONCLUSION Stimulating macrophages with IL-10 proved effective in improving the inflammatory environment and promoting the osteogenic differentiation of BMSCs.The IL-10/STAT3 signaling pathway has emerged as a key regulator in the macrophage-mediated control of BMSCs’osteogenic differentiation. 展开更多
关键词 MACROPHAGES INTerLEUKIN-10 Bone marrow mesenchymal stem cells Signal transducer and activator of transcription 3 Inflammatory response
下载PDF
Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy
16
作者 Samuel Abokyi Dennis Yan-yin Tse 《Neural Regeneration Research》 SCIE CAS 2025年第2期366-377,共12页
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu... Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects. 展开更多
关键词 age-related macular degeneration anti-aging interventions autophagy calorie restriction diabetic retinopathy exercise glaucoma NEUROMODULATION PHAGOCYTOSIS photoreceptor outer segment degradation retinal aging transcription factor EB
下载PDF
Comparison of genomic and transcriptional microbiome analysis in gastric cancer patients and healthy individuals
17
作者 Darja Nikitina Konrad Lehr +5 位作者 Ramiro Vilchez-Vargas Laimas Virginijus Jonaitis Mindaugas Urba Juozas Kupcinskas Jurgita Skieceviciene Alexander Link 《World Journal of Gastroenterology》 SCIE CAS 2023年第7期1202-1218,共17页
BACKGROUND Helicobacter pylori and the stomach microbiome play a crucial role in gastric carcinogenesis,and detailed characterization of the microbiome is necessary for a better understanding of the pathophysiology of... BACKGROUND Helicobacter pylori and the stomach microbiome play a crucial role in gastric carcinogenesis,and detailed characterization of the microbiome is necessary for a better understanding of the pathophysiology of the disease.There are two common modalities for microbiome analysis:DNA(16S rRNA gene)and RNA(16S rRNA transcript)sequencing.The implications from the use of one or another sequencing approach on the characterization and comparability of the mucosal microbiome in gastric cancer(GC)are poorly studied.AIM To characterize the microbiota of GC using 16S rRNA gene and its transcript and determine difference in the bacterial composition.METHODS In this study,316 DNA and RNA samples extracted from 105 individual stomach biopsies were included.The study cohort consisted of 29 healthy control individuals and 76 patients with GC.Gastric tissue biopsy samples were collected from damaged mucosa and healthy mucosa at least 5 cm from the tumor tissue.From the controls,healthy stomach mucosa biopsies were collected.From all biopsies RNA and DNA were extracted.RNA was reverse transcribed into cDNA.V1-V2 region of bacterial 16S rRNA gene from all samples were amplified and sequenced on an Illumina MiSeq platform.Bray-Curtis algorithm was used to construct sample-similarity matrices abundances of taxonomic ranks in each sample type.For significant differences between groups permutational multivariate analysis of variance and Mann-Whitney test followed by false-discovery rate test were used.RESULTS Microbial analysis revealed that only a portion of phylotypes(18%-30%)overlapped between microbial profiles obtained from DNA and RNA samples.Detailed analysis revealed differences between GC and controls depending on the chosen modality,identifying 17 genera at the DNA level and 27 genera at the RNA level.Ten of those bacteria were found to be different from the control group at both levels.The key taxa showed congruent results in various tests used;however,differences in 7 bacteria taxa were found uniquely only at the DNA level,and 17 uniquely only at the RNA level.Furthermore,RNA sequencing was more sensitive for detecting differences in bacterial richness,as well as differences in the relative abundance of Reyranella and Sediminibacterium according to the type of GC.In each study group(control,tumor,and tumor adjacent)were found differences between DNA and RNA bacterial profiles.CONCLUSION Comprehensive microbial study provides evidence for the effect of choice of sequencing modality on the microbiota profile,as well as on the identified differences between case and control. 展开更多
关键词 Gastric cancer MICROBIOME Helicobacter pylori 16S rRNA gene 16S rRNA transcript 16S rDNA
下载PDF
Transcriptional regulatory network during axonal regeneration of dorsal root ganglion neurons:laser-capture microdissection and deep sequencing
18
作者 Li-Li Zhao Tao Zhang +2 位作者 Wei-Xiao Huang Ting-Ting Guo Xiao-Song Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2056-2066,共11页
The key regulators and regeneration-associated genes involved in axonal regeneration of neurons after injury have not been clarified.In high-throughput sequencing,various factors influence the final sequencing results... The key regulators and regeneration-associated genes involved in axonal regeneration of neurons after injury have not been clarified.In high-throughput sequencing,various factors influence the final sequencing results,including the number and size of cells,the depth of sequencing,and the method of cell separation.There is still a lack of research on the detailed molecular expression profile during the regeneration of dorsal root ganglion neuron axon.In this study,we performed lase r-capture microdissection coupled with RNA sequencing on dorsal root ganglion neurons at 0,3,6,and 12 hours and 1,3,and 7 days after sciatic nerve crush in rats.We identified three stages after dorsal root ganglion injury:early(3-12 hours),pre-regeneration(1 day),and regeneration(3-7 days).Gene expression patterns and related function enrichment res ults showed that one module of genes was highly related to axonal regeneration.We verified the up-regulation of activating transcription factor 3(Atf3),Kruppel like factor 6(Klf6),AT-rich inte raction domain 5A(Arid5α),CAMP responsive element modulator(Crem),and FOS like 1,AP-1 transcription factor Subunit(Fosl1) in dorsal root ganglion neurons after injury.Suppressing these transcription factors(Crem,Arid5o,Fosl1 and Klf6) reduced axonal regrowth in vitro.As the hub transcription factor,Atf3 showed higher expression and activity at the preregeneration and regeneration stages.G protein-coupled estrogen receptor 1(Gper1),inte rleukin 12a(Il12α),estrogen receptor 1(ESR1),and interleukin 6(IL6) may be upstream factors that trigger the activation of Atf3 during the repair of axon injury in the early stage.Our study presents the detailed molecular expression profile during axonal regeneration of dorsal root ganglion neurons after peripheral nerve injury.These findings may provide reference for the clinical screening of molecular targets for the treatment of peripheral nerve injury. 展开更多
关键词 Arid5a ATF3 Crem dorsal root ganglion Fosl1 KLF6 laser-capture microdissection NEURON smart-seq2 gene expression profile transcription factor
下载PDF
Detection for Transcriptional Activity of Alternaria Tenuissim Protein Elicitor in Yeast Two-hybrid System 被引量:3
19
作者 刘延锋 邱德文 +1 位作者 曾洪梅 杨秀芬 《Agricultural Science & Technology》 CAS 2008年第1期64-66,共3页
The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain ... The peaT1 gene fragment was amplified from pGEM-6p-l-peaT1 by PCR, and recovered target gene was cloned into pLexA vector. After digestion and sequencing, the bait vector pLexA-peaT1 was transformed into yeast strain EGY48 [p8op-lacZ] by PEG/LiAC, and the transcriptional activity of bait vector was detected. The results showed that recombinant bait plasmid pLexA-PEMG1 was constructed, for the two bands of recombinant bait plasmid in agarose gel eleetrophoresis were expected after digesting by restriction endonuclease EcoR I and Xho I. Therefore, the recombinant bait plasmid could be used in yeast two-hybrid system to screen a cDNA library. 展开更多
关键词 PeaT1 Yeast two-hybrid transcriptional activity
下载PDF
Transcriptional Regulation of 10 Mitochondrial Genes in Different Tissues of NCa CMS System in Brassica napus L. and Their Relationship with Sterility 被引量:3
20
作者 危文亮 王汉中 刘贵华 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第1期72-80,共9页
Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea... Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed. 展开更多
关键词 Brassica napus L. cytoplasmic male sterility (CMS) mitochondrial gene expression restorer gene transcriptional regulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部