期刊文献+
共找到226篇文章
< 1 2 12 >
每页显示 20 50 100
基于FOA优化PID参数的永磁同步电机转速控制
1
作者 王萍 《微特电机》 2024年第8期58-62,67,共6页
为提高永磁同步电机转速控制的效果,提出一种基于果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)优化比例积分微分控制(proportional-integral-derivative control)的方法。其中,以PMSM调速系统为背景,构建调速系统的PID方法,然... 为提高永磁同步电机转速控制的效果,提出一种基于果蝇优化算法(Fruit Fly Optimization Algorithm,FOA)优化比例积分微分控制(proportional-integral-derivative control)的方法。其中,以PMSM调速系统为背景,构建调速系统的PID方法,然后构建FOA优化PID参数的PID控制器,以实现永磁同步电机转速系统的自适应控制。仿真结果表明,FOA-PID方法具有响应速度快、超调小、抗干扰能力和速度调节能力强的特点,在固定负载改变转速条件下,仅需0.02 s即可达到稳定状态,有效改善了永磁同步电机转速控制系统的控制性能;相较于标准PID和RBF-PID方法,FOA-PID方法在正向起动转速情况下的超调量为1.36%,分别低5.73%和1.12%;在负向起动转速情况下,FOA-PID方法的最大超调量为0.56%,分别低15.13%和8.22%。由此得出,本FOA-PID方法可行,具有一定的优越性。 展开更多
关键词 永磁同步电机 转速控制 PID控制 果蝇优化算法 超调量
下载PDF
基于FOA-BP-AdaBoost的大坝变形预测模型及应用
2
作者 王凯 李鸳承 +3 位作者 范亚军 何广焕 蒙金龙 赵磊 《红水河》 2024年第2期1-5,共5页
为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位... 为提升大坝变形监测预测精度,解决变形量受多因素影响等问题,笔者提出了基于果蝇优化算法(FOA)、BP神经网络的AdaBoost强预测组合模型(FOA-BP-AdaBoost),并与BP神经网络模型、FOA-BP神经网络模型应用于工程实例中的预测精度进行多方位量化对比。结果表明:强预测模型集齐了果蝇算法全局优化、BP神经网络局部寻优和AdaBoost“优中选优”的特点,最大程度优化了预测效果;实例应用证实了FOA-BP-AdaBoost模型在大坝变形预测领域的准确性和有效性。该模型已成功应用于工程实例,可为类似工程提供参考。 展开更多
关键词 大坝 变形监测 foa-BP-AdaBoost模型 强预测模型 果蝇优化算法 BP神经网络
下载PDF
基于K-近邻与FOA改进聚类的数据异常分析模型及用电行为分析
3
作者 周伟 牛誉蓉 《成都工业学院学报》 2024年第5期11-16,共6页
对隐藏在大数据中的信息进行深层挖掘时,由于存在数据来源、统计口径、人员输入、行为异常等方面的问题,可能出现异常数据。针对此类问题,首先利用离散小波变换进行多尺度分解,然后采用K-近邻思想对局部区域的密度、距离重新定义,来提... 对隐藏在大数据中的信息进行深层挖掘时,由于存在数据来源、统计口径、人员输入、行为异常等方面的问题,可能出现异常数据。针对此类问题,首先利用离散小波变换进行多尺度分解,然后采用K-近邻思想对局部区域的密度、距离重新定义,来提高对异常值的识别精度;最后结合改进的果蝇优化算法,对密度峰值聚类算法中的截断距离进行优化,提出基于K-近邻与改进果蝇优化的密度峰值聚类异常分析模型。从异常值检测角度进行仿真实验分析,根据用户数据多时间尺度特征,对不同时间尺度的复合数据进行聚类,对用电行为进行分析;选择多种标准测试函数,对基于知识学习的改进果蝇优化算法性能进行对比研究。结果显示,基于K-近邻的算法能够将变压器中不同于正常运行模式的少数异常曲线及单个用户的异常用电模式检测出来,其有效性得到了验证。在基于知识学习的改进果蝇优化算法中,随着果蝇个体数量增加其寻优能力也得到提高。 展开更多
关键词 异常值检测 果蝇优化算法 K-近邻算法 峰值聚类算法 用电行为
下载PDF
基于FOA-MCKD的分步拉伸一体机轴承故障诊断方法
4
作者 曹泽 黄新宇 +1 位作者 刘莉 曹悦川 《化工自动化及仪表》 CAS 2024年第3期438-442,共5页
针对分步拉伸一体机大负载、低转速工况特点,在分析轴承故障诊断难点的基础上,提出一种用于分步拉伸机轴承的故障诊断方法。以最大相关峭度解卷积(MCKD)信号的包络谱作为适应度函数,利用果蝇优化算法(FOA)自适应地选择MCKD滤波器参数;之... 针对分步拉伸一体机大负载、低转速工况特点,在分析轴承故障诊断难点的基础上,提出一种用于分步拉伸机轴承的故障诊断方法。以最大相关峭度解卷积(MCKD)信号的包络谱作为适应度函数,利用果蝇优化算法(FOA)自适应地选择MCKD滤波器参数;之后,对处理后的信号通过包络解调分析出分步拉伸机轴承故障诊断类型。通过信号分析与轴承拆解,确定了轴承故障类型为电蚀导致的外圈故障,也验证了所提方法的有效性。 展开更多
关键词 foa-MCKD 故障诊断 分步拉伸机 轴承
下载PDF
基于CIFE-FOA-DELM的SCR脱硝入口NO_(x)浓度预测方法研究
5
作者 董威 林子杰 王雅昀 《电力科技与环保》 2024年第3期313-320,共8页
针对脱硝入口NO_(x)浓度监测值作为脱硝前馈输入导致的喷氨控制滞后问题,提出了基于炉膛参数的脱硝入口NO_(x)浓度CIFE-FOA-DELM预测方法。采用互信息特征选择方法进行预测模型的特征变量筛选;引入经果蝇寻优算法优化的深度极限学习建立... 针对脱硝入口NO_(x)浓度监测值作为脱硝前馈输入导致的喷氨控制滞后问题,提出了基于炉膛参数的脱硝入口NO_(x)浓度CIFE-FOA-DELM预测方法。采用互信息特征选择方法进行预测模型的特征变量筛选;引入经果蝇寻优算法优化的深度极限学习建立NO_(x)浓度预测模型;并利用某660 MW火电机组历史运行数据进行模型验证,与反向传播、支持向量机、深度极限学习机、FOA-SVM模型的预测结果进行对比。结果表明:CIFE-FOA-DELM预测方法具备更高的预测精度,平均绝对百分比误差SMAPE、均方根误差SRMSE、拟合优度R2分别为0.261%、1.384、0.965。与CEMS监测数据对比,脱硝入口NO_(x)浓度预测值提前了180 s,有利于解决喷氨控制滞后问题。 展开更多
关键词 SCR 脱硝入口NO_(x)浓度 CIFE-foa-DELM 互信息特征选择 果蝇优化算法 深度极限学习机 喷氨控制
下载PDF
基于动态FOA优化RBF神经网络的综合能源系统负荷预测
6
作者 黄文静 吴蔚 《河北电力技术》 2024年第2期8-11,17,共5页
综合能源系统多元负荷预测是有效提升能源利用效率、降低用能成本的主要途径之一。针对综合能源系统数据繁杂、不易预测的问题,首先引入动态FOA算法优化RBF神经网络,帮助RBF神经网络寻优;其次运用Lasso原理对气象因素进行选择,将负荷数... 综合能源系统多元负荷预测是有效提升能源利用效率、降低用能成本的主要途径之一。针对综合能源系统数据繁杂、不易预测的问题,首先引入动态FOA算法优化RBF神经网络,帮助RBF神经网络寻优;其次运用Lasso原理对气象因素进行选择,将负荷数据及气象因素输入到动态FOA优化后的RBF神经网络;最后对北方某园区进行综合能源系统负荷预测,并与BP神经网络进行对比验证。预测结果表明,采用该方法进行负荷预测能有效改善预测效果,保障了区域综合能源系统的优化运行。 展开更多
关键词 综合能源 负荷预测 RBF神经网络 foa算法
下载PDF
基于IFOA-RotGBM的矿用挖掘机发动机故障诊断 被引量:1
7
作者 顾清华 孙文静 李学现 《金属矿山》 CAS 北大核心 2023年第9期156-163,共8页
针对矿山挖掘机发动机工作机理复杂、故障诊断效率低且精度不高的问题,提出了一种基于IFOA优化RotGBM的矿用挖掘机发动机故障诊断方法。首先利用随机森林-递归特征消除法(RF-RFE)对采集的挖掘机发动机故障数据进行特征提取,剔除冗余不... 针对矿山挖掘机发动机工作机理复杂、故障诊断效率低且精度不高的问题,提出了一种基于IFOA优化RotGBM的矿用挖掘机发动机故障诊断方法。首先利用随机森林-递归特征消除法(RF-RFE)对采集的挖掘机发动机故障数据进行特征提取,剔除冗余不相关特征;其次提出了一种改进的果蝇优化算法(IFOA)对LightGBM进行超参数寻优;然后融合旋转森林和LightGBM生成RotGBM,构建了新的故障诊断模型;最后利用某矿山挖掘机发动机故障数据对模型进行了验证,并与其他常用方法进行了性能对比分析。仿真结果表明:所提方法的诊断性能优于其他诊断方法,能达到98.31%的诊断精度,0.22%的误报率和2.5%的漏检率,满足矿山挖掘机发动机的故障诊断要求。 展开更多
关键词 矿用挖掘机发动机 故障诊断 旋转森林 LightGBM foa
下载PDF
基于IFOA-SVM的变压器故障诊断与定位研究 被引量:1
8
作者 申文强 王宗琳 +1 位作者 樊尚旭 郭永吉 《电工技术》 2023年第12期46-50,共5页
为了充分发掘变压器油中溶解气体所蕴含的故障信息,实现变压器故障性质和故障位置的准确判断,利用邻域粗糙集(Neighborhood Rough Set, NRS)和强化型果蝇算法(Improved Fruit Fly Optimization Algorithm, IFOA)优化的支持向量机(Suppor... 为了充分发掘变压器油中溶解气体所蕴含的故障信息,实现变压器故障性质和故障位置的准确判断,利用邻域粗糙集(Neighborhood Rough Set, NRS)和强化型果蝇算法(Improved Fruit Fly Optimization Algorithm, IFOA)优化的支持向量机(Support Vector Machine, SVM)构建变压器故障诊断与定位多层分类模型。首先,利用邻域粗糙集按照条件属性重要度对变压器故障样本特征值进行约简。其次,为了提升变压器故障诊断与定位模型的分类精度,设计一种强化型果蝇算法对SVM的核函数参数和惩罚因子选取进行优化。利用Tent-logistic混沌映射产生的混沌序列生成果蝇种群的初始位置信息,减少随机过程带来的不可控性;利用动态自适应步长参数调节个体的搜索范围,增强FOA的寻优效率。仿真分析结果表明,基于改进模型的方法不仅可以实现变压器故障位置的判定,而且能提升变压器故障诊断的精度。 展开更多
关键词 变压器 故障诊断 故障定位 果蝇优化算法 支持向量机
下载PDF
基于LLE-FOA-SVR模型的煤矿突水预测 被引量:1
9
作者 唐守锋 史可 张晔 《传感器与微系统》 CSCD 北大核心 2023年第4期148-151,共4页
针对煤矿突水预测精度低、训练速度慢的问题,提出基于局部线性嵌入(LLE)—果蝇优化算法(FOA)—支持向量回归(SVR)的煤矿突水预测模型。首先,利用LLE在非线性数据特征提取方面的优势,提取煤矿突水影响因素原始数据的本质特征,形成重构因... 针对煤矿突水预测精度低、训练速度慢的问题,提出基于局部线性嵌入(LLE)—果蝇优化算法(FOA)—支持向量回归(SVR)的煤矿突水预测模型。首先,利用LLE在非线性数据特征提取方面的优势,提取煤矿突水影响因素原始数据的本质特征,形成重构因子,减少数据间的冗余信息和噪声。然后,利用FOA对SVR的参数进行迭代优化,并将最优参数代入SVR中,以解决传统SVR参数优化困难的问题。最后,结合实例并将LLE-FOA-SVR模型的预测结果与反向传播(BP)、SVR、LLE-SVR模型的预测结果进行对比。实验结果表明:该模型的预测精度高于其他3种模型,预测精度可达90%,且建模时间和运算时间更短。 展开更多
关键词 煤矿突水 局部线性嵌入 支持向量回归机 果蝇优化算法 LLE-foa-SVR模型
下载PDF
基于超球和ASSRFOA的多生支持向量机
10
作者 莫源乐 朱嘉静 +2 位作者 刘勇国 张云 李巧勤 《计算机系统应用》 2023年第9期43-52,共10页
支持向量机(support vector machine,SVM)是一种基于结构风险最小化的机器学习方法,能够有效解决分类问题.但随着研究问题的复杂化,现实的分类问题往往是多分类问题,而SVM仅能用于处理二分类任务.针对这个问题,一对多策略的多生支持向量... 支持向量机(support vector machine,SVM)是一种基于结构风险最小化的机器学习方法,能够有效解决分类问题.但随着研究问题的复杂化,现实的分类问题往往是多分类问题,而SVM仅能用于处理二分类任务.针对这个问题,一对多策略的多生支持向量机(multiple birth support vector machine,MBSVM)能够以较低的复杂度实现多分类,但缺点在于分类精度较低.本文对MBSVM进行改进,提出了一种新的SVM多分类算法:基于超球(hypersphere)和自适应缩小步长果蝇优化算法(fruit fly optimization algorithm with adaptive step size reduction,ASSRFOA)的MBSVM,简称HA-MBSVM.通过拟合超球得到的信息,先进行类别划分再构建分类器,并引入约束距离调节因子来适当提高分类器的差异性,同时采用ASSRFOA求解二次规划问题,HA-MBSVM可以更好地解决多分类问题.我们采用6个数据集评估HA-MBSVM的性能,实验结果表明HA-MBSVM的整体性能优于各对比算法. 展开更多
关键词 超球 多生支持向量机 多分类 自适应缩小步长 果蝇优化算法
下载PDF
基于FOA-BP神经网络的悬点示功图反演技术
11
作者 卢玉 《油气田地面工程》 2023年第10期58-63,共6页
悬点示功图是判断抽油机井生产状况的有效手段之一,针对目前电参转功图的难点问题,提出了一种基于FOA-BP神经网络的抽油机悬点示功图反演方法。采集测试抽油机电功率并将其转化为光杆功率,将抽油机光杆功率和扭矩因数作为网络的输入参数... 悬点示功图是判断抽油机井生产状况的有效手段之一,针对目前电参转功图的难点问题,提出了一种基于FOA-BP神经网络的抽油机悬点示功图反演方法。采集测试抽油机电功率并将其转化为光杆功率,将抽油机光杆功率和扭矩因数作为网络的输入参数,通过模型训练消除抽油机结构及平衡参数对示功图反演计算的影响,再经过小波变换去噪处理,完成由电动机功率向悬点示功图的反演计算。对现场160井次实例计算表明,反演示功图与实测示功图吻合度达95.18%。基于FOA-BP神经网络的抽油机悬点示功图反演技术为及时、准确判断抽油机系统井下运行状态提供了理论技术支撑。 展开更多
关键词 悬点示功图 电动机功率 扭矩因数 光杆功率 foa-BP算法
下载PDF
一种基于智能算法的GNSS高程拟合方法
12
作者 王朝 王志文 《港口航道与近海工程》 2024年第3期86-90,共5页
广义回归神经网络(GRNN)是一种新型的前馈神经网络模型,具有训练次数少、耗时短、非线性参数的预报能力较强等优点。但GRNN唯一的调节参数SPREAD不能自动获取限制其进一步的应用。针对该缺陷,本文采用果蝇优化算法(FOA)与GRNN相结合构建... 广义回归神经网络(GRNN)是一种新型的前馈神经网络模型,具有训练次数少、耗时短、非线性参数的预报能力较强等优点。但GRNN唯一的调节参数SPREAD不能自动获取限制其进一步的应用。针对该缺陷,本文采用果蝇优化算法(FOA)与GRNN相结合构建FOAGRNN模型对GRNN进行优化,自动获取调节参数的值。为了检验FOAGRNN模型的GNSS高程拟合精度,进行了实验分析。实验结果证明了FOAGRNN模型的GNSS高程拟合精度可达6mm。为进一步检验FOAGRNN模型的优越性,采用与平面拟合模型、二次曲面拟合模型进行对比。实验结果表示FOAGRNN模型的拟合精度要优于平面拟合模型和二次曲面拟合模型,证明了FOAGRNN模型在数据样本较少的情况下,其GNSS高程拟合精度仍然可以达到较高精度。 展开更多
关键词 果蝇优化算法(foa) 广义回归神经网络(GRNN) GNSS高程拟合
下载PDF
基于改进的FOA-SVM导水裂隙带高度预测研究 被引量:30
13
作者 张宏伟 朱志洁 +1 位作者 霍丙杰 宋卫华 《中国安全科学学报》 CAS CSCD 北大核心 2013年第10期9-14,共6页
为准确预测导水裂隙带高度,提出一种新的预测方法。在对部分矿井的导水裂隙带发育情况统计分析的基础上,应用支持向量机(SVM)建立导水裂隙带高度预计模型。采用改进的果蝇优化算法(FOA)优化参数,避免SVM的参数选取对预测准确性的影响。... 为准确预测导水裂隙带高度,提出一种新的预测方法。在对部分矿井的导水裂隙带发育情况统计分析的基础上,应用支持向量机(SVM)建立导水裂隙带高度预计模型。采用改进的果蝇优化算法(FOA)优化参数,避免SVM的参数选取对预测准确性的影响。选取统计样本,检验该模型的预测性能。并将该模型的预测结果与未改进的3种方法(FOA优化的SVM、遗传算法(GA)优化的SVM和粒子群算法(PSO)优化的SVM模型)分别进行比较。结果表明:改进的FOA-SVM模型有较高的预测精度和较强的泛化能力,能够相对准确、高效地预测导水裂隙带高度。 展开更多
关键词 导水裂隙带 支持向量机(SVM) 果蝇优化算法(foa) 回归 仿真预测
下载PDF
FOA优化GRNN网络的尾矿库安全预测 被引量:11
14
作者 聂娜娜 王英博 +1 位作者 王铭泽 李仲学 《中国安全生产科学技术》 CAS CSCD 2014年第8期39-45,共7页
从尾矿库安全管理实际出发,针对尾矿库安全预测影响因素多、波动性大和非线性的特点,提出了果蝇算法优化广义回归神经网络的尾矿库安全预测模型。通过利用果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时采用相关分析... 从尾矿库安全管理实际出发,针对尾矿库安全预测影响因素多、波动性大和非线性的特点,提出了果蝇算法优化广义回归神经网络的尾矿库安全预测模型。通过利用果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时采用相关分析方法选取尾矿库安全评价指标,实现尾矿库的安全评价预测。以辽宁本溪南芬尾矿库为研究实例进行预测仿真,实验结果表明:相较于GRNN网络模型和BP网络模型,采用果蝇算法优化的GRNN模型预测精度更高,适用性更强,在尾矿库安全预测方面具有很大的实际应用价值。 展开更多
关键词 尾矿库 果蝇优化算法 广义回归神经网络 安全预测
下载PDF
基于改进深度稀疏自编码器及FOA-ELM的电力负荷预测 被引量:24
15
作者 张淑清 要俊波 +2 位作者 张立国 姜安琦 穆勇 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期49-57,共9页
智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L... 智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L1正则化加入到深度稀疏自编码器(DSAE)中能够诱导出更好的稀疏性,用IDSAE对影响电力负荷预测精度的高维数据进行特征降维,消除了指标间的多重共线性,实现高维数据向低维空间的压缩编码。采用FOA优化算法优化ELM的权值和阈值,得到最优值,能够克服因极限学习机随机选择权值和阈值导致预测精度低的缺点。首先将气象因素通过IDSAE降维,得到稀疏后的综合气象因素特征指标,协同电力负荷数据作为FOA优化的ELM预测模型的输入向量进行电力负荷预测。通过与DSAE-FOAELM、DSAE-ELM和IDSAE-ELM等模型的对比实验,证明了提出的预测模型能有效提高预测精度,经计算得出预测精度提升大约8%。 展开更多
关键词 短期电力负荷预测 深度稀疏自编码器(DSAE) 降维 果蝇优化算法 极限学习机
下载PDF
基于FOA的叠前反演方法 被引量:4
16
作者 窦玉坛 史松群 刘化清 《石油地球物理勘探》 EI CSCD 北大核心 2013年第6期948-953,1016+851,共6页
本文提出一种基于果蝇优化算法的非线性叠前反演方法,利用Schaffer函数F6进行算法性能测试,并对不同加噪百分比的模型数据利用果蝇优化算法(FOA)进行EI反演,提取相应的弹性参数,反演能够收敛到全局最优解。将此法应用于鄂尔多斯SLG地区... 本文提出一种基于果蝇优化算法的非线性叠前反演方法,利用Schaffer函数F6进行算法性能测试,并对不同加噪百分比的模型数据利用果蝇优化算法(FOA)进行EI反演,提取相应的弹性参数,反演能够收敛到全局最优解。将此法应用于鄂尔多斯SLG地区实际二维数据,能够快速得到较稳定可靠的弹性反演参数,表明文中方法能够用于指示气层的横向变化。 展开更多
关键词 foa非线性 叠前反演 ZOEPPRITZ方程 全局优化
下载PDF
基于ELM和FOA的股票价格预测 被引量:7
17
作者 李栋 张文宇 《计算机工程与应用》 CSCD 2014年第18期14-18,32,共6页
针对股票价格预测中应用极限学习机预测存在稳定性不理想的问题,提出了一种改进果蝇优化极限学习机(IFOA-ELM)预测模型的算法。在该算法中,果蝇群通过不断调整群半径来优化ELM的输入层与隐含层连接权值和隐含层阈值,并以优化后的结果为... 针对股票价格预测中应用极限学习机预测存在稳定性不理想的问题,提出了一种改进果蝇优化极限学习机(IFOA-ELM)预测模型的算法。在该算法中,果蝇群通过不断调整群半径来优化ELM的输入层与隐含层连接权值和隐含层阈值,并以优化后的结果为基础,构建ELM预测模型。将IFOA-ELM模型用于股票价格预测。实验表明,与ELM和FOA-ELM相比,IFOA-ELM在股票价格预测中具有更高的预测精度和更好的稳定性。 展开更多
关键词 股票价格 预测 果蝇优化算法 极限学习机
下载PDF
FOAS收录开放存取期刊的影响力分析 被引量:6
18
作者 张玉祥 吴瑞丽 《图书馆论坛》 CSSCI 北大核心 2012年第1期24-28,共5页
外文开放存取期刊集成服务系统是一个基于用户服务角度的在线服务平台,它收录了海量的外文开放存取期刊资源,并对资源进行了深度挖掘和揭示。文章从学科分布和学术质量评价两个角度对FOAS集成的开放存取期刊进行了统计分析,进而揭示FOA... 外文开放存取期刊集成服务系统是一个基于用户服务角度的在线服务平台,它收录了海量的外文开放存取期刊资源,并对资源进行了深度挖掘和揭示。文章从学科分布和学术质量评价两个角度对FOAS集成的开放存取期刊进行了统计分析,进而揭示FOAS的学术影响力,为图书馆在数字资源采购方面提供参考。 展开更多
关键词 开放资源整合 开放存取期刊 foaS 质量评价 学术影响力
下载PDF
基于GA-BP模型的大型接地网腐蚀速率预测方法
19
作者 彭威龙 曾松梧 +5 位作者 张宝庆 王子浪 乐骁文 梁峰 谢炀 杨鑫 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第3期264-270,共7页
接地网腐蚀速率是接地网腐蚀状态评估的一个重要方面。人工智能算法模型可以很好地预测接地网腐蚀速率,针对目前预测模型中特征输入量选取不够全面的问题,在对接地网进行电网络理论分析的基础上,确定接地网腐蚀采样点,提出以土壤理化性... 接地网腐蚀速率是接地网腐蚀状态评估的一个重要方面。人工智能算法模型可以很好地预测接地网腐蚀速率,针对目前预测模型中特征输入量选取不够全面的问题,在对接地网进行电网络理论分析的基础上,确定接地网腐蚀采样点,提出以土壤理化性质和接地网电阻平均增长率为预测模型的特征输入量,采用遗传算法(genetic algorithm,GA)优化反向传播(back propagation,BP)神经网络,建立接地网腐蚀速率预测模型。将所提模型预测结果与未优化的BP神经网络模型和采用果蝇优化算法(fruit fly optimization algorithm,FOA)优化BP神经网络模型对比。在BP神经网络模型预测精度方面,GA算法相比于FOA算法,RMSE和MAPE值分别提高5.88%和1.5%,相比未经优化的BP神经网络模型,RMSE和MAPE值提高22.01%和4.96%。由此可见,提出的方法有更好的适用性。 展开更多
关键词 接地网腐蚀 BP神经网络 腐蚀速率 遗传算法 果蝇优化算法
下载PDF
基于FOA-SVM模型的输油管道内腐蚀速率预测 被引量:16
20
作者 吴庆伟 王金龙 张平 《腐蚀与防护》 北大核心 2017年第9期732-736,共5页
针对管道内腐蚀速率相关问题,采集某输油管道内腐蚀的实测数据,应用多元统计分析算法,在支持向量机(SVM)的基础上建立管道内腐蚀速率预测模型。采用果蝇优化算法(FOA)对预测模型进行优化训练,建立FOASVM预测模型,利用实测数据样本对模... 针对管道内腐蚀速率相关问题,采集某输油管道内腐蚀的实测数据,应用多元统计分析算法,在支持向量机(SVM)的基础上建立管道内腐蚀速率预测模型。采用果蝇优化算法(FOA)对预测模型进行优化训练,建立FOASVM预测模型,利用实测数据样本对模型的预测结果进行检验。结果表明:综合方差和均差分别为1.397×10-3和0.037 4,FOA-SVM预测模型相比灰色组合模型预测值和最小二乘支持向量机(LS-SVM)模型预计结果稳定性好、精度高,但是FOA-SVM预测模型训练时间较长,今后在提高模型预测效率上需要进一步研究。 展开更多
关键词 管道内腐蚀速率 支持向量机SVM 果蝇算法foa 多元统计分析
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部